Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin E. Trenberth is active.

Publication


Featured researches published by Kevin E. Trenberth.


Climate Dynamics | 1994

Decadal atmosphere-ocean variations in the Pacific

Kevin E. Trenberth; James W. Hurrell

Considerable evidence has emerged of a substantial decade-long change in the north Pacific atmosphere and ocean lasting from about 1976 to 1988. Observed significant changes in the atmospheric circulation throughout the troposphere revealed a deeper and eastward shifted Aleutian low pressure system in the winter half year which advected warmer and moister air along the west coast of North America and into Alaska and colder air over the north Pacific. Consequently, there were increases in temperatures and sea surface temperatures (SSTs) along the west coast of North America and Alaska but decreases in SSTs over the central north Pacific, as well as changes in coastal rainfall and streamflow, and decreases in sea ice in the Bering Sea. Associated changes occurred in the surface wind stress, and, by inference, in the Sverdrup transport in the north Pacific Ocean. Changes in the monthly mean flow were accompanied by a southward shift in the storm tracks and associated synoptic eddy activity and in the surface ocean sensible and latent heat fluxes. In addition to the changes in the physical environment, the deeper Aleutian low increased the nutrient supply as seen through increases in total chlorophyll in the water column, phytoplankton and zooplankton. These changes, along with the altered ocean currents and temperatures, changed the migration patterns and increased the stock of many fish species. A north Pacific (NP) index is defined to measure the decadal variations, and the temporal variability of the index is explored on daily, annual, interannual and decadal time scales. The dominant atmosphere-ocean relation in the north Pacific is one where atmospheric changes lead SSTs by one to two months. However, strong ties are revealed with events in the tropical Pacific, with changes in tropical Pacific SSTs leading SSTs in the north Pacific by three months. Changes in the storm tracks in the north Pacific help to reinforce and maintain the anomalous circulation in the upper troposphere. A hypothesis is put forward outlining the tropical and extratropical realtionships which stresses the role of tropical forcing but with important feed-backs in the extratropics that serve to emphasize the decadal relative to interannual time scales. The Pacific decadal timescale variations are linked to recent changes in the frequency and intensity of El Niño versus La Nina events but whether climate change associated with “global warming” is a factor is an open question.


Bulletin of the American Meteorological Society | 2003

The Changing Character of Precipitation

Kevin E. Trenberth; Aiguo Dai; Roy Rasmussen; David B. Parsons

Abstract From a societal, weather, and climate perspective, precipitation intensity, duration, frequency, and phase are as much of concern as total amounts, as these factors determine the disposition of precipitation once it hits the ground and how much runs off. At the extremes of precipitation incidence are the events that give rise to floods and droughts, whose changes in occurrence and severity have an enormous impact on the environment and society. Hence, advancing understanding and the ability to model and predict the character of precipitation is vital but requires new approaches to examining data and models. Various mechanisms, storms and so forth, exist to bring about precipitation. Because the rate of precipitation, conditional on when it falls, greatly exceeds the rate of replenishment of moisture by surface evaporation, most precipitation comes from moisture already in the atmosphere at the time the storm begins, and transport of moisture by the storm-scale circulation into the storm is vital....


Journal of Geophysical Research | 1998

Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures

Kevin E. Trenberth; Grant Branstator; David J. Karoly; Arun Kumar; Ngar-Cheung Lau; Chester Ropelewski

The primary focus of this review is tropical-extratropical interactions and especially the issues involved in determining the response of the extratropical atmosphere to tropical forcing associated with sea surface temperature (SST) anomalies. The review encompasses observations, empirical studies, theory and modeling of the extratropical teleconnections with a focus on developments over the Tropical Oceans-Global Atmosphere (TOGA) decade and the current state of understanding. In the tropical atmosphere, anomalous SSTs force anomalies in convection and large-scale overturning with subsidence in the descending branch of the local Hadley circulation. The resulting strong upper tropospheric divergence in the tropics and convergence in the subtropics act as a Rossby wave source. The climatological stationary planetary waves and associated jet streams, especially in the northern hemisphere, can make the total Rossby wave sources somewhat insensitive to the position of the tropical heating that induces them and thus can create preferred teleconnection response patterns, such as the Pacific-North American (PNA) pattern. However, a number of factors influence the dispersion and propagation of Rossby waves through the atmosphere, including zonal asymmetries in the climatological state, transients, and baroclinic and nonlinear effects. Internal midlatitude sources can amplify perturbations. Observations, modeling, and theory have clearly shown how storm tracks change in response to changes in quasi-stationary waves and how these changes generally feedback to maintain or strengthen the dominant perturbations through vorticity and momentum transports. The response of the extratropical atmosphere naturally induces changes in the underlying surface, so that there are changes in extratropical SSTs and changes in land surface hydrology and moisture availability that can feedback and influence the total response. Land surface processes are believed to be especially important in spring and summer. Anomalous SSTs and tropical forcing have tended to be strongest in the northern winter, and teleconnections in the southern hemisphere are weaker and more variable and thus more inclined to be masked by natural variability. Occasional strong forcing in seasons other than winter can produce strong and identifiable signals in the northern hemisphere and, because the noise of natural variability is less, the signal-to-noise ratio can be large. The relative importance of tropical versus extratropical SST forcings has been established through numerical experiments with atmospheric general circulation models (AGCMs). Predictability of anomalous circulation and associated surface temperature and precipitation in the extratropics is somewhat limited by the difficulty of finding a modest signal embedded in the high level of noise from natural variability in the extratropics, and the complexity and variety of the possible feedbacks. Accordingly, ensembles of AGCM runs and time averaging are needed to identify signals and make predictions. Strong anomalous tropical forcing provides opportunities for skillful forecasts, and the accuracy and usefulness of forecasts is expected to improve as the ability to forecast the anomalous SSTs improves, as models improve, and as the information available from the mean and the spread of ensemble forecasts is better utilized.


Bulletin of the American Meteorological Society | 1990

Recent Observed Interdecadal Climate Changes in the Northern Hemisphere

Kevin E. Trenberth

The largest increases in surface temperatures over the Northern Hemisphere in the decade prior to 1988 were in Alaska, while substantial decreases occurred in the North Pacific Ocean. This illustrates the considerable geographic spatial structure to interdecadal temperature variations associated with changes in the atmospheric circulation. In particular, from 1977 to 1988, there was a deeper and eastward-shifted Aleutian low-pressure system in the winter half year, which advected warmer and moister air into Alaska and colder air over the North Pacific. Associated changes in surface-wind stress and wind-stress curl altered the North Pacific Ocean currents, as revealed by the Sverdrup transport. The North Pacific changes appear to be linked through teleconnections to tropical atmosphere–ocean interactions and the frequency of El Nino versus La Nina events. Consequently, the question of why it was so warm in Alaska becomes changed to one of why there were three tropical Pacific Warm Events, but no Cold Event...


Bulletin of the American Meteorological Society | 1997

Earth's Annual Global Mean Energy Budget

Jeffrey T. Kiehl; Kevin E. Trenberth

Abstract The purpose of this paper is to put forward a new estimate, in the context of previous assessments, of the annual global mean energy budget. A description is provided of the source of each component to this budget. The top-of-atmosphere shortwave and longwave flux of energy is constrained by satellite observations. Partitioning of the radiative energy throughout the atmosphere is achieved through the use of detailed radiation models for both the longwave and shortwave spectral regions. Spectral features of shortwave and longwave fluxes at both the top and surface of the earths system are presented. The longwave radiative forcing of the climate system for both clear (125 W m-2) and cloudy (155 W m-2) conditions are discussed. The authors find that for the clear sky case the contribution due to water vapor to the total longwave radiative forcing is 75 W m-2, while for carbon dioxide it is 32 W m-2. Clouds alter these values, and the effects of clouds on both the longwave and shortwave budget are a...


Bulletin of the American Meteorological Society | 2009

Earth's Global Energy Budget

Kevin E. Trenberth; John T. Fasullo; Jeffrey T. Kiehl

An update is provided on the Earths global annual mean energy budget in the light of new observations and analyses. In 1997, Kiehl and Trenberth provided a review of past estimates and performed a number of radiative computations to better establish the role of clouds and various greenhouse gases in the overall radiative energy flows, with top-of-atmosphere (TOA) values constrained by Earth Radiation Budget Experiment values from 1985 to 1989, when the TOA values were approximately in balance. The Clouds and the Earths Radiant Energy System (CERES) measurements from March 2000 to May 2004 are used at TOA but adjusted to an estimated imbalance from the enhanced greenhouse effect of 0.9 W m−2. Revised estimates of surface turbulent fluxes are made based on various sources. The partitioning of solar radiation in the atmosphere is based in part on the International Satellite Cloud Climatology Project (ISCCP) FD computations that utilize the global ISCCP cloud data every 3 h, and also accounts for increased ...


Geophysical Research Letters | 1996

The 1990–1995 El Niño‐Southern Oscillation Event: Longest on Record

Kevin E. Trenberth; Timothy J. Hoar

The tendency for more frequent E1 Nifio events America to the International Dateline. It is the basin-scale and fewer La Nifia events since the late 1970s has been phenomenon, however, that is linked to globaJ atmospheric linked to decadl changes in climate throughout the Pacific circulation and associated weather anomalies. The primary basin. Aspects of the most recent warming in the tropical response in the atmosphere coupled to EN is the SO and, Pacific from 1990 to 1995, which are connected to but not together, the tropical Pacific warm events are often referred synonymous with E1 Nifio, are unprecedented in the climate to as ENSO events. record of the past 113 years. There is a distinction between E1 Nifio (EN), the Southern Oscillation (SO)in the atmo- sphere, and ENSO, where the two are strongly linked, that emerges clearly on decadal time scaJes. In the traditional E1 Nifio region, sea surface temperature anomalies (SSTAs) have waxed and waned, while SSTAs in the centraequatorial Pa- cific, which are better linked to the SO, remained positive from 1990 to June 1995. We carry out several statisticaJ tests to assess the likelihood that the recent behavior of the SO is part of a natural decadal-timescae variation. One test fits an autoregressive-moving average (ARMA) model to a measure of the SO given by the first hundred years of the pressures at Darwin, Australia, beginning in 1882. Both the recent trend for more ENSO events since 1976 and the prolonged 1990- 1995 ENSO event are unexpected given the previous record, with a probability of occurrence about once in 2,000 years. This opens up the possibility that the ENSO changes may be partly caused by the observed increases in greenhouse gases.


Bulletin of the American Meteorological Society | 2008

THE COSMIC/FORMOSAT-3 MISSION : Early Results

Richard A. Anthes; P. A. Bernhardt; Yongsheng Chen; L. Cucurull; K. F. Dymond; D. Ector; S. B. Healy; Shu-peng Ho; Douglas Hunt; Ying-Hwa Kuo; Hui Liu; Kevin W. Manning; C. Mccormick; Thomas K. Meehan; William J. Randel; Christian Rocken; William S. Schreiner; Sergey Sokolovskiy; Stig Syndergaard; D. C. Thompson; Kevin E. Trenberth; Tae-Kwon Wee; Nick Yen; Zhen Zeng

The radio occultation (RO) technique, which makes use of radio signals transmitted by the global positioning system (GPS) satellites, has emerged as a powerful and relatively inexpensive approach for sounding the global atmosphere with high precision, accuracy, and vertical resolution in all weather and over both land and ocean. On 15 April 2006, the joint Taiwan-U.S. Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC)/Formosa Satellite Mission 3 (COSMIC/FORMOSAT-3, hereafter COSMIC) mission, a constellation of six microsatellites, was launched into a 512-km orbit. After launch the satellites were gradually deployed to their final orbits at 800 km, a process that took about 17 months. During the early weeks of the deployment, the satellites were spaced closely, offering a unique opportunity to verify the high precision of RO measurements. As of September 2007, COSMIC is providing about 2000 RO soundings per day to support the research and operational communities. COSMIC RO dat...


Journal of Hydrometeorology | 2002

Estimates of Freshwater Discharge from Continents: Latitudinal and Seasonal Variations

Aiguo Dai; Kevin E. Trenberth

Annual and monthly mean values of continental freshwater discharge into the oceans are estimated at 18 resolution using several methods. The most accurate estimate is based on streamflow data from the world’s largest 921 rivers, supplemented with estimates of discharge from unmonitored areas based on the ratios of runoff and drainage area between the unmonitored and monitored regions. Simulations using a river transport model (RTM) forced by a runoff field were used to derive the river mouth outflow from the farthest downstream gauge records. Separate estimates are also made using RTM simulations forced by three different runoff fields: 1) based on observed streamflow and a water balance model, and from estimates of precipitation P minus evaporation E computed as residuals from the atmospheric moisture budget using atmospheric reanalyses from 2) the National Centers for Environmental Prediction‐National Center for Atmospheric Research (NCEP‐NCAR) and 3) the European Centre for Medium-Range Weather Forecasts (ECMWF). Compared with previous estimates, improvements are made in extending observed discharge downstream to the river mouth, in accounting for the unmonitored streamflow, in discharging runoff at correct locations, and in providing an annual cycle of continental discharge. The use of river mouth outflow increases the global continental discharge by ;19% compared with unadjusted streamflow from the farthest downstream stations. The river-based estimate of global continental discharge presented here is 37 288 6 662 km3 yr21, which is ;7.6% of global P or 35% of terrestrial P. While this number is comparable to earlier estimates, its partitioning into individual oceans and its latitudinal distribution differ from earlier studies. The peak discharges into the Arctic, the Pacific, and global oceans occur in June, versus May for the Atlantic and August for the Indian Oceans. Snow accumulation and melt are shown to have large effects on the annual cycle of discharge into all ocean basins except for the Indian Ocean and the Mediterranean and Black Seas. The discharge and its latitudinal distribution implied by the observation-based runoff and the ECMWF reanalysis-based P‐E agree well with the river-based estimates, whereas the discharge implied by the NCEP‐NCAR reanalysis-based P‐E has a negative bias.


Journal of Climate | 2001

Estimates of Meridional Atmosphere and Ocean Heat Transports

Kevin E. Trenberth; Julie M. Caron

New estimates of the poleward energy transport based on atmospheric reanalyses from the National Centers for Environmental Prediction‐National Center for Atmospheric Research (NCEP‐NCAR) and the European Centre for Medium-Range Weather Forecasts are presented. The analysis focuses on the period from February 1985 to April 1989 when there are reliable top-of-the-atmosphere radiation data from the Earth Radiation Budget Experiment. Annual mean poleward transports of atmospheric energy peak at 5.0 6 0.14 PW at 438N and with similar values near 408S, which is much larger than previous estimates. The standard deviation of annual and zonal mean variability from 1979 to 1998 is mostly less than 0.15 PW (1%‐3%). Results are evaluated by computing the implied ocean heat transports, utilizing physical constraints, and comparing them with direct oceanographic estimates and those from successful stable coupled climate models that have been run without artificial flux adjustments for several centuries. Reasonable agreement among ocean transports is obtained with the disparate methods when the results from NCEP‐NCAR reanalyses based upon residually derived (not modelgenerated) methods are used, and this suggests that improvements have occurred and convergence is to the true values. Atmospheric transports adjusted for spurious subterranean transports over land areas are inferred and show that poleward ocean heat transports are dominant only between 08 and 178N. At 358 latitude, at which the peak total poleward transport in each hemisphere occurs, the atmospheric transport accounts for 78% of the total in the Northern Hemisphere and 92% in the Southern Hemisphere. In general, a much greater portion of the required poleward transport is contributed by the atmosphere than the ocean, as compared with previous estimates.

Collaboration


Dive into the Kevin E. Trenberth's collaboration.

Top Co-Authors

Avatar

John T. Fasullo

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Aiguo Dai

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Thomas R. Karl

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

James W. Hurrell

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

David P. Stepaniak

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Gerald A. Meehl

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Lesley Smith

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Yongxin Zhang

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Lijing Cheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Julie M. Caron

National Center for Atmospheric Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge