Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin G. Moffat is active.

Publication


Featured researches published by Kevin G. Moffat.


The Journal of Neuroscience | 2004

Differential Localization of Glutamate Receptor Subunits at the Drosophila Neuromuscular Junction

Scott B. Marrus; Scott L. Portman; Marcus J. Allen; Kevin G. Moffat; Aaron DiAntonio

The subunit composition of postsynaptic neurotransmitter receptors is a key determinant of synaptic physiology. Two glutamate receptor subunits, Drosophila glutamate receptor IIA (DGluRIIA) and DGluRIIB, are expressed at the Drosophila neuromuscular junction and are redundant for viability, yet differ in their physiological properties. We now identify a third glutamate receptor subunit at the Drosophila neuromuscular junction, DGluRIII, which is essential for viability. DGluRIII is required for the synaptic localization of DGluRIIA and DGluRIIB and for synaptic transmission. Either DGluRIIA or DGluRIIB, but not both, is required for the synaptic localization of DGluRIII. DGluRIIA and DGluRIIB compete with each other for access to DGluRIII and subsequent localization to the synapse. These results are consistent with a model of a multimeric receptor in which DGluRIII is an essential component. At single postsynaptic cells that receive innervation from multiple motoneurons, DGluRIII is abundant at all synapses. However, DGluRIIA and DGluRIIB are differentially localized at the postsynaptic density opposite distinct motoneurons. Hence, innervating motoneurons may regulate the subunit composition of their receptor fields within a shared postsynaptic cell. The capacity of presynaptic inputs to shape the subunit composition of postsynaptic receptors could be an important mechanism for synapse-specific regulation of synaptic function and plasticity.


The Journal of Neuroscience | 2004

Regulation of Neuronal Excitability through Pumilio-Dependent Control of a Sodium Channel Gene

Christopher J. Mee; Edward C.G. Pym; Kevin G. Moffat; Richard A. Baines

Dynamic changes in synaptic connectivity and strength, which occur during both embryonic development and learning, have the tendency to destabilize neural circuits. To overcome this, neurons have developed a diversity of homeostatic mechanisms to maintain firing within physiologically defined limits. In this study, we show that activity-dependent control of mRNA for a specific voltage-gated Na+ channel [encoded by paralytic (para)] contributes to the regulation of membrane excitability in Drosophila motoneurons. Quantification of para mRNA, by real-time reverse-transcription PCR, shows that levels are significantly decreased in CNSs in which synaptic excitation is elevated, whereas, conversely, they are significantly increased when synaptic vesicle release is blocked. Quantification of mRNA encoding the translational repressor pumilio (pum) reveals a reciprocal regulation to that seen for para. Pumilio is sufficient to influence para mRNA. Thus, para mRNA is significantly elevated in a loss-of-function allele of pum (pumbemused), whereas expression of a full-length pum transgene is sufficient to reduce para mRNA. In the absence of pum, increased synaptic excitation fails to reduce para mRNA, showing that Pum is also necessary for activity-dependent regulation of para mRNA. Analysis of voltage-gated Na+ current (INa) mediated by para in two identified motoneurons (termed aCC and RP2) reveals that removal of pum is sufficient to increase one of two separable INa components (persistent INa), whereas overexpression of a pum transgene is sufficient to suppress both components (transient and persistent). We show, through use of anemone toxin (ATX II), that alteration in persistent INa is sufficient to regulate membrane excitability in these two motoneurons.


The Journal of Neuroscience | 1999

Targeted Expression of Truncated Glued Disrupts Giant Fiber Synapse Formation in Drosophila

Marcus J. Allen; Xiaoliang Shan; Phyllis Caruccio; Stephan J. Froggett; Kevin G. Moffat; Rodney K. Murphey

Glued1(Gl1) mutants produce a truncated protein that acts as a poison subunit and disables the cytoplasmic retrograde motor dynein. Heterozygous mutants have axonal defects in the adult eye and the nervous system. Here we show that selective expression of the poison subunit in neurons of the giant fiber (GF) system disrupts synaptogenesis between the GF and one of its targets, the tergotrochanteral motorneuron (TTMn). Growth and pathfinding by the GF axon and the TTMn dendrite are normal, but the terminal of the GF axon fails to develop normally and becomes swollen with large vesicles. This is a presynaptic defect because expression of truncatedGlued restricted to the GF results in the same defect. When tested electrophysiologically, the flies with abnormal axons show a weakened or absent GF–TTMn connection. InGlued1 heterozygotes, GF–TTMn synapse formation appears morphologically normal, but adult flies show abnormal responses to repetitive stimuli. This physiological effect is also observed when tetanus toxin is expressed in the GFs. Because the GF–TTMn is thought to be a mixed electrochemical synapse, the results show that Glued has a role in assembling both the chemical and electrical components. We speculate that disrupting transport of a retrograde signal disrupts synapse formation and maturation.


The Journal of Neuroscience | 2008

Pumilio Binds para mRNA and Requires Nanos and Brat to Regulate Sodium Current in Drosophila Motoneurons

Nara I. Muraro; Andrew J. Weston; André P. Gerber; Stefan Luschnig; Kevin G. Moffat; Richard A. Baines

Homeostatic regulation of ionic currents is of paramount importance during periods of synaptic growth or remodeling. Our previous work has identified the translational repressor Pumilio (Pum) as a regulator of sodium current (I Na) and excitability in Drosophila motoneurons. In this current study, we show that Pum is able to bind directly the mRNA encoding the Drosophila voltage-gated sodium channel paralytic (para). We identify a putative binding site for Pum in the 3′ end of the para open reading frame (ORF). Characterization of the mechanism of action of Pum, using whole-cell patch clamp and real-time reverse transcription-PCR, reveals that the full-length protein is required for translational repression of para mRNA. Additionally, the cofactor Nanos is essential for Pum-dependent para repression, whereas the requirement for Brain Tumor (Brat) is cell type specific. Thus, Pum-dependent regulation of I Na in motoneurons requires both Nanos and Brat, whereas regulation in other neuronal types seemingly requires only Nanos but not Brat. We also show that Pum is able to reduce the level of nanos mRNA and as such identify a potential negative-feedback mechanism to protect neurons from overactivity of Pum. Finally, we show coupling between I Na (para) and I K (Shal) such that Pum-mediated change in para results in a compensatory change in Shal. The identification of para as a direct target of Pum represents the first ion channel to be translationally regulated by this repressor and the location of the binding motif is the first example in an ORF rather than in the canonical 3′-untranslated region of target transcripts.


The Journal of Comparative Neurology | 1998

Development of the giant fiber neuron of Drosophila melanogaster

Marcus J. Allen; James A. Drummond; Kevin G. Moffat

The giant fiber system (GFS) of Drosophila melanogaster provides a convenient system in which to study neural development. It mediates escape behaviour through a small number of neurons, including the giant fibers (GFs), to innervate the tergotrochantral jump muscle (TTM) and the dorsal longitudinal flight muscles.


Neuron | 2011

arouser Reveals a Role for Synapse Number in the Regulation of Ethanol Sensitivity

Mark Eddison; Douglas J. Guarnieri; Ling Cheng; Che-Hsiung Liu; Kevin G. Moffat; Graeme Ph D. Davis; Ulrike Heberlein

A reduced sensitivity to the sedating effects of alcohol is a characteristic associated with alcohol use disorders (AUDs). A genetic screen for ethanol sedation mutants in Drosophila identified arouser (aru), which functions in developing neurons to reduce ethanol sensitivity. Genetic evidence suggests that aru regulates ethanol sensitivity through its activation by Egfr/Erk signaling and its inhibition by PI3K/Akt signaling. The aru mutant also has an increased number of synaptic terminals in the larva and adult fly. Both the increased ethanol sensitivity and synapse number of the aru mutant are restored upon adult social isolation, suggesting a causal relationship between synapse number and ethanol sensitivity. We thus show that a developmental abnormality affecting synapse number and ethanol sensitivity is not permanent and can be reversed by manipulating the environment of the adult fly.


Development Genes and Evolution | 2005

A novel family of mitochondrial proteins is represented by the Drosophila genes slmo, preli-like and real-time

Chris T. Dee; Kevin G. Moffat

Mitochondria play essential roles in development and disease. The characterisation of mitochondrial proteins is therefore of particular importance. The slowmo (slmo) gene of Drosophila melanogaster has been shown to encode a novel type of mitochondrial protein, and is essential in the developing central nervous system. The Slmo protein contains a conserved PRELI/MSF1p′ domain, found in proteins from a wide variety of eukaryotic organisms. However, the function of the proteins of this family is currently unknown. In this study, the evolutionary relationships between members of the PRELI/MSF1p′ family are described, and we present the first analysis of two novel Drosophila genes predicted to encode proteins of this type. The first of these, preli-like (prel), is expressed ubiquitously during embryonic development, whilst the second, real-time (retm), is expressed dynamically in the developing gut and central nervous system. retm encodes a member of a novel conserved subclass of larger PRELI/MSF1p′ domain proteins, which also contain the CRAL-TRIO motif thought to mediate the transport of small hydrophobic ligands. Here we provide evidence that, like Slmo, both the Prel and Retm proteins are localised to the mitochondria, indicating that the function of the PRELI/MSF1p′ domain is specific to this organelle.


Development Genes and Evolution | 1996

Inducible ternary control of transgene expression and cell ablation in Drosophila

Hazel K. Smith; Ian J H Roberts; Marcus J. Allen; J.B. Connolly; Kevin G. Moffat; Cahir J. O'Kane

Abstract In Drosophila, P-GAL4 enhancer trap lines can target expression of a cloned gene, under control of a UASGAL element, to any cells of interest. However, additional expression of GAL4 in other cells can produce unwanted lethality or side-effects, particularly when it drives expression of a toxic gene product. To target the toxic gene product ricin A chain specifically to adult neurons, we have superimposed a second layer of regulation on the GAL4 control. We have constructed flies in which an effector gene is separated from UASGAL by a polyadenylation site flanked by two FRT sites in the same orientation. A recombination event between the two FRT sites, catalysed by yeast FLP recombinase, brings the effector gene under control of UASGAL. Consequently, expression of the effector gene is turned on in that cell and its descendants, if they also express GAL4. Recombinase is supplied by heat shock induction of a FLP transgene, allowing both timing and frequency of recombination events to be regulated. Using a lacZ effector (reporter) to test the system, we have generated labelled clones in the embryonic mesoderm and shown that most recombination events occur soon after FLP recombinase is supplied. By substituting the ricin A chain gene for lacZ, we have performed mosaic cell ablations in one GAL4 line that marks the adult giant descending neurons, and in a second which marks mushroom body neurons. In a number of cases we observed loss of one or both the adult giant descending neurons, or of subsets of mushroom body neurons. In association with the mushroom body ablations, we also observed misrouting of surviving axons.


Invertebrate Neuroscience | 2004

Mutation in slowmo causes defects in Drosophila larval locomotor behaviour

Ahmet Carhan; Simon Reeve; Chris T. Dee; Richard A. Baines; Kevin G. Moffat

We have identified a mutant slowmotion phenotype in first instar larval peristaltic behaviour of Drosophila. By the end of embryogenesis and during early first instar phases, slowmo mutant animals show a marked decrease in locomotory behaviour, resulting from both a reduction in number and rate of peristaltic contractions. Inhibition of neurotransmitter release, using targeted expression of tetanus toxin light chain (TeTxLC), in the slowmo neurons marked by an enhancer-trap results in a similar phenotype of largely absent or uncoordinated contractions. Cloning of the slowmo gene identifies a product related to a family of proteins of unknown function. We show that Slowmo is associated with mitochondria, indicative of it being a mitochondrial protein, and that during embryogenesis and early larval development is restricted to the nervous system in a subset of cells. The enhancer-trap marks a cellular component of the CNS that is seemingly required to regulate peristaltic movement.


Current Opinion in Genetics & Development | 1992

Selective cell ablation and genetic surgery

Cahir J. O'Kane; Kevin G. Moffat

Selective ablation is a useful tool to investigate the origin, fate or function of particular cells. It can be achieved either using physical methods or toxigenic methods. Recent successes with conditional ablation should make it easier to ablate a wider range of cells than has hitherto been possible.

Collaboration


Dive into the Kevin G. Moffat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antara De

University of Warwick

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge