Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin Hakala is active.

Publication


Featured researches published by Kevin Hakala.


Proteomics | 2010

Proteomic Analysis Identifies In vivo Candidate Matrix Metalloproteinase-9 Substrates in the Left Ventricle Post-Myocardial Infarction

Rogelio Zamilpa; Elizabeth F. Lopez; Ying Ann Chiao; Qiuxia Dai; Gladys Patricia Escobar; Kevin Hakala; Susan T. Weintraub; Merry L. Lindsey

Matrix metalloproteinase‐9 (MMP‐9) deletion has been shown to improve remodeling of the left ventricle post‐myocardial infarction (MI), but the mechanisms to explain this improvement have not been fully elucidated. MMP‐9 has a broad range of in vitro substrates, but relevant in vivo substrates are incompletely defined. Accordingly, we evaluated the infarct regions of wild‐type (wt) and MMP‐9 null (null) mice using a proteomic strategy. Wt and null groups showed similar infarct sizes (48±3 in wt and 45±3% in null), indicating that both groups received an equal injury stimulus. Left ventricle infarct tissue was homogenized and analyzed by 2‐DE and MS. Of 31 spot intensity differences, the intensities of 9 spots were higher and 22 spots were lower in null mice compared to wt (all p<0.05). Several extracellular matrix proteins were identified in these spots by MS, including fibronectin, tenascin‐C, thrombospondin‐1, and laminin. Fibronectin was observed on the gels at a lower than expected molecular weight in the wt group, which suggested substrate cleavage, and the lower molecular weight spot was observed at lower intensity in the MMP‐9 null group, which suggested cleavage by MMP‐9. Immunoblotting confirmed the presence of fibronectin cleavage products in the wt samples and lower levels in the absence of MMP‐9. In conclusion, examining infarct tissue from wt and MMP‐9 null mice by proteomic analysis provides a powerful and unique method to identify in vivo candidate MMP substrates.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Plasminogen activator inhibitor 1 - insulin-like growth factor binding protein 3 cascade regulates stress-induced senescence

David J. Elzi; Yanlai Lai; Meihua Song; Kevin Hakala; Susan T. Weintraub; Yuzuru Shiio

Cellular senescence is widely believed to play a key role in tumor suppression, but the molecular pathways that regulate senescence are only incompletely understood. By using a secretome proteomics approach, we identified insulin-like growth factor binding protein 3 (IGFBP3) as a secreted mediator of breast cancer senescence upon chemotherapeutic drug treatment. The senescence-inducing activity of IGFBP3 is inhibited by tissue-type plasminogen activator-mediated proteolysis, which is counteracted by plasminogen activator inhibitor 1 (PAI-1), another secreted mediator of senescence. We demonstrate that IGFBP3 is a critical downstream target of PAI-1-induced senescence. These results suggest a role for an extracellular cascade of secreted proteins in the regulation of cellular senescence.


Journal of Proteomics | 2013

Texas 3-Step decellularization protocol: Looking at the cardiac extracellular matrix

Lisandra E. de Castro Brás; Trevi A. Ramirez; Kristine Y. DeLeon-Pennell; Ying Ann Chiao; Yonggang Ma; Qiuxia Dai; Ganesh V. Halade; Kevin Hakala; Susan T. Weintraub; Merry L. Lindsey

UNLABELLED The extracellular matrix (ECM) is a critical tissue component, providing structural support as well as important regulatory signaling cues to govern cellular growth, metabolism, and differentiation. The study of ECM proteins, however, is hampered by the low solubility of ECM components in common solubilizing reagents. ECM proteins are often not detected during proteomics analyses using unbiased approaches due to solubility issues and relatively low abundance compared to highly abundant cytoplasmic and mitochondrial proteins. Decellularization has become a common technique for ECM protein-enrichment and is frequently used in engineering studies. Solubilizing the ECM after decellularization for further proteomic examination has not been previously explored in depth. In this study, we describe testing of a series of protocols that enabled us to develop a novel optimized strategy for the enrichment and solubilization of ECM components. Following tissue decellularization, we use acid extraction and enzymatic deglycosylation to facilitate re-solubilization. The end result is the generation of three fractions for each sample: soluble components, cellular components, and an insoluble ECM fraction. These fractions, developed in mass spectrometry-compatible buffers, are amenable to proteomics analysis. The developed protocol allows identification (by mass spectrometry) and quantification (by mass spectrometry or immunoblotting) of ECM components in tissue samples. BIOLOGICAL SIGNIFICANCE The study of extracellular matrix (ECM) proteins in pathological and non-pathological conditions is often hampered by the low solubility of ECM components in common solubilizing reagents. Additionally, ECM proteins are often not detected during global proteomic analyses due to their relatively low abundance compared to highly abundant cytoplasmic and mitochondrial proteins. In this manuscript we describe testing of a series of protocols that enabled us to develop a final novel optimized strategy for the enrichment and solubilization of ECM components. The end result is the generation of three fractions for each sample: soluble components, cellular components, and an insoluble ECM fraction. By analysis of each independent fraction, differences in protein levels can be detected that in normal conditions would be masked. These fractions are amenable to mass spectrometry analysis to identify and quantify ECM components in tissue samples. The manuscript places a strong emphasis on the immediate practical relevance of the method, particularly when using mass spectrometry approaches; additionally, the optimized method was validated and compared to other methodologies described in the literature.


Molecular and Cellular Biology | 2012

Wnt Antagonist SFRP1 Functions as a Secreted Mediator of Senescence

David J. Elzi; Meihua Song; Kevin Hakala; Susan T. Weintraub; Yuzuru Shiio

ABSTRACT Cellular senescence has emerged as a critical tumor suppressive mechanism in recent years, but relatively little is known about how senescence occurs. Here, we report that secreted Frizzled-related protein 1 (SFRP1), a secreted antagonist of Wnt signaling, is oversecreted upon cellular senescence caused by DNA damage or oxidative stress. SFRP1 is necessary for stress-induced senescence caused by these factors and is sufficient for the induction of senescence phenotypes. We present evidence suggesting that SFRP1 functions as a secreted mediator of senescence through inhibition of Wnt signaling and activation of the retinoblastoma (Rb) pathway and that cancer-associated SFRP1 mutants are defective for senescence induction.


Journal of Proteome Research | 2010

In vivo Matrix Metalloproteinase-7 Substrates Identified in the Left Ventricle Post-Myocardial Infarction Using Proteomics

Ying Ann Chiao; Rogelio Zamilpa; Elizabeth F. Lopez; Qiuxia Dai; Gladys P. Escobar; Kevin Hakala; Susan T. Weintraub; Merry L. Lindsey

Matrix metalloproteinase-7 (MMP-7) deletion has been shown to improve survival after myocardial infarction (MI). MMP-7 has a large array of in vitro substrates, but in vivo substrates for MMP-7 following MI have not been fully identified. Accordingly, we evaluated the infarct regions of wild-type (WT; n = 12) and MMP-7 null (null; n = 10) mice using a proteomic strategy. Seven days post-MI, infarct regions of the left ventricles were excised, homogenized, and protein extracts were analyzed by two-dimensional gel electrophoresis and mass spectrometry. Of 13 spots that showed intensity differences between WT and null, the intensities of eight spots were higher and those of five spots were lower in the null group (p < 0.05). Fibronectin and tenascin-C, known in vitro substrates of MMP-7, were identified in spots that showed lower intensity in the null. Immunoblotting and in vitro cleavage assays confirmed reduced fibronectin and tenascin-C fragment generation in the null, and this effect was restored by exogenous administration of MMP-7. Lower levels of full-length peroxiredoxin-1 and -2 and higher levels of the full-length peroxiredoxin-3 were detected in the null group, suggesting MMP-7 deletion may also indirectly regulate protein levels through nonenzymatic mechanisms. In conclusion, this is the first study to identify fibronectin and tenascin-C as in vivo MMP-7 substrates in the infarcted left ventricle using a proteomic approach.


Journal of Proteome Research | 2008

The left ventricle proteome differentiates middle-aged and old left ventricles in mice.

Qiuxia Dai; G. Patricia Escobar; Kevin Hakala; Jessica M. Lambert; Susan T. Weintraub; Merry L. Lindsey

Middle-aged and old left ventricles (LVs) are structurally and functionally very similar. Compared to a young LV, both show increased wall thickness and increased cavity size, with preserved cardiac function. However, when a stressor such as myocardial infarction occurs, striking differences are revealed between young and old LVs and there is a marked reduction in survival rates for the old group. The objective of this study was to investigate the proteomic basis of age-related changes in the LV of male mice in order to identify proteins that are differentially expressed between middle-aged and old groups and to gain mechanistic insight into effects of aging on the unstressed heart. Young (3 months old; n = 6), middle-aged (MA; 15 months old; n = 6), and old (23 months old; n = 5) LVs were examined by echocardiography, homogenized, and separated into soluble and insoluble protein fractions using differential extraction. We found that the LV mass-to-tibia ratio increased from 6.4 +/- 0.2 mg/mm in young to 11.0 +/- 0.6 and 10.1 +/- 0.7 mg/mm in MA and old, respectively (both p < 0.05 vs young), which was caused by increases in both LV wall thickness and volume. Using two-dimensional gel electrophoresis, we detected age-related alterations in the levels of 73 proteins (all p < 0.05). Among these proteins were mortalin, peroxiredoxin 3, epoxide hydrolase, and the superoxide dismutases SOD-1 (Cu/ZnSOD) and SOD-2 (MnSOD), which have been previously associated with aging and/or cardiovascular disease. Together, these results reveal proteomic changes that occur in the LV with age. The proteins identified here may be useful markers of cardiac aging and may help in deducing mechanisms to explain the inability of the old heart to withstand challenge.


Journal of Proteome Research | 2011

Proteomic dissection of the von hippel-Lindau (VHL) interactome

Yanlai Lai; Meihua Song; Kevin Hakala; Susan T. Weintraub; Yuzuru Shiio

The von Hippel-Lindau (VHL) tumor suppressor gene encodes a component of a ubiquitin ligase complex containing elongin B, elongin C, cullin 2, and Rbx1, which acts as a negative regulator of hypoxia inducible factor (HIF). VHL ubiquitinates and degrades the alpha subunits of HIF, and this is proposed to suppress tumorigenesis and tumor angiogenesis. Several lines of evidence also suggest important roles for HIF-independent VHL functions in the maintenance of primary cilium, extracellular matrix formation, and tumor suppression. We undertook a series of proteomic analyses to gain a comprehensive picture of the VHL-interacting proteins. We found that the ARF tumor suppressor interacts with VHL30, a longer VHL isoform, but not with VHL19, a shorter VHL isoform. ARF was found to release VHL30 from the E3 ligase complex, promoting the binding of VHL30 to a protein arginine methyltransferase, PRMT3. Our analysis of the VHL19 interactome also uncovered that VHL19 displays an affinity to collagens and their biosynthesis enzymes.


Biochemistry | 2011

Peroxynitrite Induced Nitrative and Oxidative Modifications Alter Tau Filament Formation

Laurel Vana; Nicholas M. Kanaan; Kevin Hakala; Susan T. Weintraub; Lester I. Binder

Tau undergoes numerous posttranslational modifications during the progression of Alzheimers disease (AD). Some of these changes accelerate tau aggregation, while others are inhibitory. AD-associated inflammation is thought to create oxygen and nitrogen radicals such as peroxynitrite (PN). In vitro, PN can nitrate many proteins, including tau. We have previously demonstrated that taus ability to form filaments is profoundly affected by treatment with PN and have attributed this inhibition to tyrosine nitration. However, PN is highly reactive and unstable leading to oxidative amino acid modifications through its free radical byproducts. To test whether PN can modify other amino acids in tau via oxidative modifications, a mutant form of the tau protein lacking all tyrosines (5XY → F) was constructed. 5XY → F tau readily forms filaments; however, like wild-type tau the extent of polymerization was greatly reduced following PN treatment. Since 5XY → F tau cannot be nitrated, it was clear that nonnitrative modifications are generated by PN treatment and that these modifications change tau filament formation. Mass spectrometry was used to identify these oxidative alterations in wild-type tau and 5XY → F tau. PN-treated wild-type tau and 5XY → F tau consistently displayed lysine formylation throughout tau in a nonsequence-specific distribution. Lysine formylation likely results from reactive free radical exposure caused by PN treatment. Therefore, our results indicate that PN treatment of proteins in vitro cannot be used to study protein nitration as it likely induces numerous other random oxidative modifications clouding the interpretations of any functional consequences of tyrosine nitration.


Journal of Proteomics | 2010

Proteomic Analysis Reveals Late Exercise Effects on Cardiac Remodeling Following Myocardial Infarction

Arvin Bansal; Qiuxia Dai; Ying Ann Chiao; Kevin Hakala; John Q. Zhang; Susan T. Weintraub; Merry L. Lindsey

Exercise has been shown to improve function of the left ventricle (LV) following myocardial infarction (MI). The mechanisms to explain this benefit have not been fully delineated, but may involve improved mechanics resulting in unloading effects and increased endothelial nitric oxide synthase levels [1,2]. Accordingly, the goal of this study was to determine how the LV infarct proteome is altered by a post-MI exercise regimen. Sprague-Dawley rats underwent ligation of the left descending coronary artery to induce MI. Exercise training was initiated four weeks post-MI and continued for 8 weeks in n=12 rats. Compared with the sedentary MI group (n=10), the infarct region of rats receiving exercise showed 20 protein spots with altered intensities in two-dimensional gels (15 increased and 5 decreased; p<0.05). Of 52 proteins identified in 20 spots, decreased levels of voltage-dependent anion-selective channel 2 and increased levels of glutathione perioxidase and manganese superoxide were confirmed by immunoblotting. Cardiac function was preserved in rats receiving exercise training, and the beneficial effect was linked with changes in these 3 proteins. In conclusion, our results suggest that post-MI exercise training increases anti-oxidant levels and decreases ion channel levels, which may explain, in part, the improved cardiac function seen with exercise.


Journal of Molecular Biology | 2008

Visualization of Bacteriophage T3 Capsids with DNA Incompletely Packaged In Vivo

Ping An Fang; Elena T. Wright; Susan T. Weintraub; Kevin Hakala; Weimin Wu; Philip Serwer; Wen Jiang

The tightly packaged double-stranded DNA (dsDNA) genome in the mature particles of many tailed bacteriophages has been shown to form multiple concentric rings when reconstructed from cryo-electron micrographs. However, recent single-particle DNA packaging force measurements have suggested that incompletely packaged DNA (ipDNA) is less ordered when it is shorter than approximately 25% of the full genome length. The study presented here initially achieves both the isolation and the ipDNA length-based fractionation of ipDNA-containing T3 phage capsids (ipDNA-capsids) produced by DNA packaging in vivo; some ipDNA has quantized lengths, as judged by high-resolution gel electrophoresis of expelled DNA. This is the first isolation of such particles among the tailed dsDNA bacteriophages. The ipDNA-capsids are a minor component (containing approximately 10(-4) of packaged DNA in all particles) and are initially detected by nondenaturing gel electrophoresis after partial purification by buoyant density centrifugation. The primary contaminants are aggregates of phage particles and empty capsids. This study then investigates ipDNA conformations by the first cryo-electron microscopy of ipDNA-capsids produced in vivo. The 3-D structures of DNA-free capsids, ipDNA-capsids with various lengths of ipDNA, and mature bacteriophage are reconstructed, which reveals the typical T=7l icosahedral shell of many tailed dsDNA bacteriophages. Though the icosahedral shell structures of these capsids are indistinguishable at the current resolution for the protein shell (approximately 15 A), the conformations of the DNA inside the shell are drastically different. T3 ipDNA-capsids with 10.6 kb or shorter dsDNA (<28% of total genome) have an ipDNA conformation indistinguishable from random. However, T3 ipDNA-capsids with 22 kb DNA (58% of total genome) form a single DNA ring next to the inner surface of the capsid shell. In contrast, dsDNA fully packaged (38.2 kb) in mature T3 phage particles forms multiple concentric rings such as those seen in other tailed dsDNA bacteriophages. The distance between the icosahedral shell and the outermost DNA ring decreases in the mature, fully packaged phage structure. These results suggest that, in the early stage of DNA packaging, the dsDNA genome is randomly distributed inside the capsid, not preferentially packaged against the inner surface of the capsid shell, and that the multiple concentric dsDNA rings seen later are the results of pressure-driven close-packing.

Collaboration


Dive into the Kevin Hakala's collaboration.

Top Co-Authors

Avatar

Susan T. Weintraub

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Meihua Song

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Yuzuru Shiio

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Merry L. Lindsey

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Qiuxia Dai

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

David J. Elzi

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Ying Ann Chiao

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Philip Serwer

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge