Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie A. Thomas is active.

Publication


Featured researches published by Julie A. Thomas.


Virology Journal | 2007

Propagating the missing bacteriophages: a large bacteriophage in a new class

Philip Serwer; Shirley J. Hayes; Julie A. Thomas; Stephen C. Hardies

The number of successful propagations/isolations of soil-borne bacteriophages is small in comparison to the number of bacteriophages observed by microscopy (great plaque count anomaly). As one resolution of the great plaque count anomaly, we use propagation in ultra-dilute agarose gels to isolate a Bacillus thuringiensis bacteriophage with a large head (95 nm in diameter), tail (486 × 26 nm), corkscrew-like tail fibers (187 × 10 nm) and genome (221 Kb) that cannot be detected by the usual procedures of microbiology. This new bacteriophage, called 0305φ8-36 (first number is month/year of isolation; remaining two numbers identify the host and bacteriophage), has a high dependence of plaque size on the concentration of a supporting agarose gel. Bacteriophage 0305φ8-36 does not propagate in the traditional gels used for bacteriophage plaque formation and also does not produce visible lysis of liquid cultures. Bacteriophage 0305φ8-36 aggregates and, during de novo isolation from the environment, is likely to be invisible to procedures of physical detection that use either filtration or centrifugal pelleting to remove bacteria. Bacteriophage 0305φ8-36 is in a new genomic class, based on genes for both structural components and DNA packaging ATPase. Thus, knowledge of environmental virus diversity is expanded with prospect of greater future expansion.


Science | 2012

Bubblegrams reveal the inner body of bacteriophage φKZ.

Weimin Wu; Julie A. Thomas; Naiqian Cheng; Lindsay W. Black; Alasdair C. Steven

Radiation damage is used to locate proteins embedded in dense DNA in a megavirus. Dense packing of macromolecules in cellular compartments and higher-order assemblies makes it difficult to pick out even quite large components in electron micrographs, despite nominally high resolution. Immunogold labeling and histochemical procedures offer ways to map certain components but are limited in their applicability. Here, we present a differential mapping procedure, based on the physical principle of protein’s greater sensitivity to radiation damage compared with that of nucleic acid.


Advances in Experimental Medicine and Biology | 2012

Condensed Genome Structure

Lindsay W. Black; Julie A. Thomas

Large, tailed dsDNA-containing bacteriophage genomes are packaged to a conserved and high density (∼500 mg/ml), generally in ∼2.5-nm, duplex-to-duplex, spaced, organized DNA shells within icosahedral capsids. Phages with these condensate properties, however, differ markedly in their inner capsid structures: (1) those with a naked condensed DNA, (2) those with many dispersed unstructured proteins embedded within the DNA, (3) those with a small number of localized proteins, and (4) those with a reduced or DNA-free internal protein structure of substantial volume. The DNA is translocated and condensed by a high-force ATPase motor into a procapsid already containing the proteins that are to be ejected together with the DNA into the infected host. The condensed genome structure of a single-phage type is unlikely to be precisely determined and can change without loss of function to fit an altered capsid size or internal structure. Although no such single-phage condensed genome structure is known exactly, it is known that a single general structure is unlikely to apply to all such phages.


Molecular Microbiology | 2012

Extensive proteolysis of head and inner body proteins by a morphogenetic protease in the giant Pseudomonas aeruginosa phage φKZ

Julie A. Thomas; Susan T. Weintraub; Weimin Wu; Dennis C. Winkler; Naiqian Cheng; Alasdair C. Steven; Lindsay W. Black

Encased within the 280 kb genome in the capsid of the giant myovirus φKZ is an unusual cylindrical proteinaceous ‘inner body’ of highly ordered structure. We present here mass spectrometry, bioinformatic and biochemical studies that reveal novel information about the φKZ head and the complex inner body. The identification of 39 cleavage sites in 19 φKZ head proteins indicates cleavage of many prohead proteins forms a major morphogenetic step in φKZ head maturation. The φKZ head protease, gp175, is newly identified here by a bioinformatics approach, as confirmed by a protein expression assay. Gp175 is distantly related to T4 gp21 and recognizes and cleaves head precursors at related but distinct S/A/G‐X‐E recognition sites. Within the φKZ head there are six high‐copy‐number proteins that are probable major components of the inner body. The molecular weights of five of these proteins are reduced 35–65% by cleavages making their mature form similar (26–31 kDa), while their precursors are dissimilar (36–88 kDa). Together the six abundant proteins sum to the estimated mass of the inner body (15–20 MDa). The identification of these proteins is important for future studies on the composition and function of the inner body.


Virology Journal | 2007

Comparative genomics of Bacillus thuringiensis phage 0305φ8-36: defining patterns of descent in a novel ancient phage lineage

Stephen C. Hardies; Julie A. Thomas; Philip Serwer

BackgroundThe recently sequenced 218 kb genome of morphologically atypical Bacillus thuringiensis phage 0305φ8-36 exhibited only limited detectable homology to known bacteriophages. The only known relative of this phage is a string of phage-like genes called BtI1 in the chromosome of B. thuringiensis israelensis. The high degree of divergence and novelty of phage genomes pose challenges in how to describe the phage from its genomic sequences.ResultsPhage 0305φ8-36 and BtI1 are estimated to have diverged 2.0 – 2.5 billion years ago. Positionally biased Blast searches aligned 30 homologous structure or morphogenesis genes between 0305φ8-36 and BtI1 that have maintained the same gene order. Functional clustering of the genes helped identify additional gene functions. A conserved long tape measure gene indicates that a long tail is an evolutionarily stable property of this phage lineage. An unusual form of the tail chaperonin system split to two genes was characterized, as was a hyperplastic homologue of the T4gp27 hub gene. Within this region some segments were best described as encoding a conservative array of structure domains fused with a variable component of exchangeable domains. Other segments were best described as multigene units engaged in modular horizontal exchange. The non-structure genes of 0305φ8-36 appear to include the remnants of two replicative systems leading to the hypothesis that the genome plan was created by fusion of two ancestral viruses. The case for a member of the RNAi RNA-directed RNA polymerase family residing in 0305φ8-36 was strengthened by extending the hidden Markov model of this family. Finally, it was noted that prospective transcriptional promoters were distributed in a gradient of small to large transcripts starting from a fixed end of the genome.ConclusionGenomic organization at a level higher than individual gene sequence comparison can be analyzed to aid in understanding large phage genomes. Methods of analysis include 1) applying a time scale, 2) augmenting blast scores with positional information, 3) categorizing genomic rearrangements into one of several processes with characteristic rates and outcomes, and 4) correlating apparent transcript sizes with genomic position, gene content, and promoter motifs.


Applied Microbiology and Biotechnology | 2012

Characterization of lytic Pseudomonas aeruginosa bacteriophages via biological properties and genomic sequences

Natia Karumidze; Julie A. Thomas; Nino Kvatadze; Marina Goderdzishvili; Kevin Hakala; Susan T. Weintraub; Zemphira Alavidze; Stephen C. Hardies

Pseudomonas aeruginosa is an important cause of infections, especially in patients with immunodeficiency or diabetes. Antibiotics are effective in preventing morbidity and mortality from Pseudomonas infection, but because of spreading multidrug-resistant bacterial strains, bacteriophages are being explored as an alternative therapy. Two newly purified broad host range Pseudomonas phages, named vB_Pae-Kakheti25 and vB_Pae-TbilisiM32, were characterized as candidates for use in phage therapy. Morphology, host range, growth properties, thermal stability, serology, genomic sequence, and virion composition are reported. When phages are used as bactericides, they are used in mixtures to overcome the development of resistance in the targeted bacterial population. These two phages are representative of diverse siphoviral and podoviral phage families, respectively, and hence have unrelated mechanisms of infection and no cross-antigenicity. Composing bactericidal phage mixtures with members of different phage families may decrease the incidence of developing resistance through a common mechanism.


Scientific Reports | 2017

Hormone therapy at early post-menopause increases cognitive control-related prefrontal activity

Romuald Girard; Elise Météreau; Julie A. Thomas; Michel Pugeat; Chen Qu; Jean-Claude Dreher

Clinical data have been equivocal and controversial as to the benefits to the brain and cognition of hormone therapy (HT) in postmenopausal women. Recent reevaluation of the role of estrogens proposed that HT may effectively prevent the deleterious effects of aging on cognition, and reduces the risks of dementia, including Alzheimer’s disease, if initiated early at the beginning of menopause. Yet, little is known about the effects of HT on brain activation related to cognitive control, the ability to make flexible decisions in relation to internal goals. Here, we used fMRI to directly test for a modulation of sequential 17β estradiol (2 mg/day) plus oral progesterone (100 mg/day) on task switching-related brain activity in women at early postmenopause. The results showed that HT enhanced dorsolateral prefrontal cortex recruitment during task switching. Between-subjects correlation analyses revealed that women who engaged more the dorsolateral prefrontal cortex showed higher task switching performance after HT administration. These results suggest that HT, when taken early at the beginning of postmenopause, may have beneficial effect on cognitive control prefrontal mechanisms. Together, these findings demonstrate that HT can prevent the appearance of reduced prefrontal cortex activity, a neurophysiological measure observed both in healthy aging and early dementia.


Virology | 2016

Identification of structural and morphogenesis genes of Pseudoalteromonas phage φRIO-1 and placement within the evolutionary history of Podoviridae

Stephen C. Hardies; Julie A. Thomas; Lindsay W. Black; Susan T. Weintraub; Chung Y. Hwang; Byung Cheol Cho

The virion proteins of Pseudoalteromonas phage φRIO-1 were identified and quantitated by mass spectrometry and gel densitometry. Bioinformatic methods customized to deal with extreme divergence defined a φRIO-1 tail structure homology group of phages, which was further related to T7 tail and internal virion proteins (IVPs). Similarly, homologs of tubular tail components and internal virion proteins were identified in essentially all completely sequenced podoviruses other than those in the subfamily Picovirinae. The podoviruses were subdivided into several tail structure homology groups, in addition to the RIO-1 and T7 groups. Molecular phylogeny indicated that these groups all arose about the same ancient time as the φRIO-1/T7 split. Hence, the T7-like infection mechanism involving the IVPs was an ancestral property of most podoviruses. The IVPs were found to variably host both tail lysozyme domains and domains destined for the cytoplasm, including the N4 virion RNA polymerase embedded within an IVP-D homolog.


Molecular & Cellular Proteomics | 2010

Proteome of the Large Pseudomonas Myovirus 201φ2-1 DELINEATION OF PROTEOLYTICALLY PROCESSED VIRION PROTEINS

Julie A. Thomas; Susan T. Weintraub; Kevin Hakala; Philip Serwer; Stephen C. Hardies

Pseudomonas chlororaphis phage 201 phi 2-1 produces a large structurally complex virion, including the products of 89 phage genes. Many of these proteins are modified by proteolysis during virion maturation. To delineate the proteolytic maturation process, 46 slices from an SDS-polyacrylamide gel were subjected to tryptic digestion and then HPLC-electrospray ionization-tandem mass spectrometry analysis. The scale of the experiment allowed high sequence coverage and detection of mass spectra assigned to peptides with one end produced by trypsin and the other end derived from a maturation cleavage (semitryptic peptides). Nineteen cleavage sites were detected in this way. From these sites, a cleavage motif was defined and used to predict the remaining cleavages required to explain the gel mobility of the processed polypeptide species. Profiling the gel with spectrum counts for specific polypeptide regions was found to be helpful in deducing the patterns of proteolysis. A total of 29 cleaved polypeptides derived from 19 gene products were thus detected in the mature 201 phi 2-1 virion. When combined with bioinformatics analyses, these results revealed the presence of head protein-encoding gene modules. Most of the propeptides that were removed from the virion after processing were acidic, whereas the mature domain remaining in the virion was nearly charge-neutral. For four of these processed virion proteins, the portions remaining in the mature virion were mutually homologous. Spectrum counts were found to overestimate the relative quantity of minor polypeptide species in the virion. The resulting sensitivity for minor species made it possible to observe a small amount of general proteolysis that also affected the virions.Pseudomonas chlororaphis phage 201φ2-1 produces a large structurally complex virion, including the products of 89 phage genes. Many of these proteins are modified by proteolysis during virion maturation. To delineate the proteolytic maturation process, 46 slices from an SDS-polyacrylamide gel were subjected to tryptic digestion and then HPLC-electrospray ionization-tandem mass spectrometry analysis. The scale of the experiment allowed high sequence coverage and detection of mass spectra assigned to peptides with one end produced by trypsin and the other end derived from a maturation cleavage (semitryptic peptides). Nineteen cleavage sites were detected in this way. From these sites, a cleavage motif was defined and used to predict the remaining cleavages required to explain the gel mobility of the processed polypeptide species. Profiling the gel with spectrum counts for specific polypeptide regions was found to be helpful in deducing the patterns of proteolysis. A total of 29 cleaved polypeptides derived from 19 gene products were thus detected in the mature 201φ2-1 virion. When combined with bioinformatics analyses, these results revealed the presence of head protein-encoding gene modules. Most of the propeptides that were removed from the virion after processing were acidic, whereas the mature domain remaining in the virion was nearly charge-neutral. For four of these processed virion proteins, the portions remaining in the mature virion were mutually homologous. Spectrum counts were found to overestimate the relative quantity of minor polypeptide species in the virion. The resulting sensitivity for minor species made it possible to observe a small amount of general proteolysis that also affected the virions.


Scientific Reports | 2015

Expression and purification of a single-chain Type IV restriction enzyme Eco94GmrSD and determination of its substrate preference.

Xinyi He; Victoria Hull; Julie A. Thomas; Xiaoqing Fu; Sonal Gidwani; Yogesh K. Gupta; Lindsay W. Black; Shuang-yong Xu

The first reported Type IV restriction endonuclease (REase) GmrSD consists of GmrS and GmrD subunits. In most bacteria, however, the gmrS and gmrD genes are fused together to encode a single-chain protein. The fused coding sequence for ECSTEC94C_1402 from E. coli strain STEC_94C was expressed in T7 Express. The protein designated as Eco94GmrSD displays modification-dependent ATP-stimulated REase activity on T4 DNA with glucosyl-5-hydroxymethyl-cytosines (glc-5hmC) and T4gt DNA with 5-hydroxymethyl-cytosines (5hmC). A C-terminal 6xHis-tagged protein was purified by two-column chromatography. The enzyme is active in Mg2+ and Mn2+ buffer. It prefers to cleave large glc-5hmC- or 5hmC-modified DNA. In phage restriction assays, Eco94GmrSD weakly restricted T4 and T4gt, whereas T4 IPI*-deficient phage (Δip1) were restricted more than 106-fold, consistent with IPI* protection of E. coli DH10B from lethal expression of the closely homologous E. coli CT596 GmrSD. Eco94GmrSD is proposed to belong to the His-Asn-His (HNH)-nuclease family by the identification of a putative C-terminal REase catalytic site D507-H508-N522. Supporting this, GmrSD variants D507A, H508A, and N522A displayed no endonuclease activity. The presence of a large number of fused GmrSD homologs suggests that GmrSD is an effective phage exclusion protein that provides a mechanism to thwart T-even phage infection.

Collaboration


Dive into the Julie A. Thomas's collaboration.

Top Co-Authors

Avatar

Stephen C. Hardies

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Philip Serwer

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan T. Weintraub

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Shirley J. Hayes

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Alasdair C. Steven

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kevin Hakala

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Naiqian Cheng

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Weimin Wu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Christopher A. Carroll

University of Texas Health Science Center at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge