Kevin J. Buhl
United States Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kevin J. Buhl.
Transactions of The American Fisheries Society | 2000
Kevin J. Buhl; Steven J. Hamilton
Abstract Laboratory studies were conducted to determine the acute toxicity of three ammonia-based fire retardants (Fire-Trol LCA-F, Fire-Trol LCM-R, and Phos-Chek 259F), five surfactant-based fire-suppressant foams (FireFoam 103B, FireFoam 104, Fire Quench, For Expan S, and Pyrocap B-136), three nitrogenous chemicals (ammonia, nitrate, and nitrite), and two anionic surfactants (linear alkylbenzene sulfonate [LAS] and sodium dodecyl sulfate [SDS]) to juvenile rainbow trout Oncorhynchus mykiss in soft water. The descending rank order of toxicity (96-h concentration lethal to 50% of test organisms [96-h LC50]) for the fire retardants was as follows: Phos-Chek 259F (168 mg/L) > Fire-Trol LCA-F (942 mg/L) = Fire-Trol LCM-R (1,141 mg/L). The descending rank order of toxicity for the foams was as follows: FireFoam 103B (12.2 mg/L) = FireFoam 104 (13.0 mg/L) > For Expan S (21.8 mg/L) > Fire Quench (39.0 mg/L) > Pyrocap B-136 (156 mg/L). Except for Pyrocap B-136, the foams were more toxic than the fire retardants....
Water Air and Soil Pollution | 2004
Steven J. Hamilton; Kevin J. Buhl
Nine stream sites in the Blackfoot River watershed in southeastern Idaho were sampled in September 2000 for water, surficial sediment, aquatic plants, aquatic invertebrates, and fish. Selenium was measured in these aquatic ecosystem components, and a hazard assessment was performed on the data. Water quality characteristics such as pH, hardness, and specific conductance were relatively uniform among the nine sites examined. Selenium was elevated in water, sediment, aquatic plants, aquatic invertebrates, and fish from several sites suggesting deposition in sediments and food web cycling through plants and invertebrates. Selenium was elevated to concentrations of concern in water at eight sites (>5 μg/L), sediment at three sites (>2 μg/g), aquatic plants at four sites (>4 μg/g), aquatic invertebrates at five sites (>3 μg/g), and fish at seven sites (>4 μg/g in whole body). The hazard assessment of selenium in the aquatic environment suggested low hazard at Sheep Creek, moderate hazard at Trail Creek, upper Slug Creek, lower Slug Creek, and lower Blackfoot River, and high hazard at Angus Creek, upper East Mill Creek, lower East Mill Creek, and Dry Valley Creek. The results of this study are consistent with results of a previous investigation and indicate that selenium concentrations from the phosphate mining area of southeastern Idaho were sufficiently elevated in several ecosystem components to cause adverse effects to aquatic resources in the Blackfoot River watershed.
Archives of Environmental Contamination and Toxicology | 1996
Kevin J. Buhl; Steven J. Hamilton
Two life stages of three federally-listed endangered fishes, Colorado squawfish (Ptychocheilus lucius), bonytail (Gila elegans), and razorback sucker (Xyrauchen texanus) were exposed to copper, selenate, selenite, and zinc individually, and to mixtures of nine inorganics in a reconstituted water that simulated the water quality of the middle Green River, Utah. The mixtures simulated environmental ratios of arsenate, boron, copper, molybdenum, selenate, selenite, uranium, vanadium, and zinc in two tributaries, Ashley Creek and Stewart Lake outlet, of the middle Green River. The rank order of toxicity of the individual inorganics, from most to least toxic, was: copper > zinc > selenite > selenate. Colorado squawfish larvae were more sensitive to all four inorganics and the two mixtures than the juveniles, whereas there was no consistent response between the two life stages for the other two species. There was no consistent difference in sensitivity to the inorganics among the three endangered fishes. Both mixtures exhibited either additive or greater than additive toxicity to these fishes. The primary toxic components in the mixtures, based on toxic units, were copper and zinc. Acute toxicity values were compared to measured environmental concentrations in the two tributaries to derive margins of uncertainty. Margins of uncertainty were low for both mixtures (9–22 for the Stewart Lake outlet mixture, and 12–32 for the Ashley Creek mixture), indicating that mixtures of inorganics derived from irrigation activities may pose a hazard to endangered fishes in the Green River.
Environmental Toxicology & Water Quality | 1997
Steven J. Hamilton; Kevin J. Buhl
Acute toxicity tests were conducted for 96 h with larval Colorado squawfish (Ptychocheilus lucius) and razorback sucker (Xyrauchen texanus) in a reconstituted water quality simulating the San Juan River near Shiprock, New Mexico, to determine biological effect concentrations. Tests were conducted with arsenate, copper, selenate, selenite, zinc, and five mixtures of seven to nine inorganics simulating environmental mixtures reported for sites along the San Juan River (Ojo Amarillo Canyon, Gallegos Canyon, Hogback East Drain, Mancos River, and McElmo Creek). Razorback suckers were significantly more sensitive to arsenate, selenate, selenite, Hogback East Drain mixture, and Ojo Amarillo Canyon mixture than were Colorado squawfish. For both species, the Gallegos Canyon mixture had synergistic toxicity, the Mancos River and McElmo Creek mixtures had additive toxicity, and the Ojo Amarillo Canyon mixture had antagonistic toxicity. The Hogback East Drain mixture had additive toxicity to Colorado squawfish, but synergistic toxicity to razorback suckers. The major toxic component in the five mixtures was copper. Comparison of biological effect concentrations (i.e., 96-h LC 50 ) with environmental water concentrations from the San Juan River resulted in a ratio of <100, which revealed a high potential hazard for copper and all five environmental mixtures. The high hazard ratios suggest inorganic contaminants could adversely affect larval Colorado squawfish and razorback suckers in the San Juan River at sites receiving elevated inorganics such as from nonpoint discharges and irrigation return flows.
Environmental Toxicology | 2000
Steven J. Hamilton; Kevin J. Buhl; Fern A. Bullard; Edward E. Little
We conducted two 90 day chronic toxicity studies with two endangered fish, razorback sucker and bonytail. Swim‐up larvae were exposed in a reconstituted water simulating the middle Green River. The toxicant mixture simulated the environmental ratio and concentrations of inorganics reported in a Department of the Interior study for the mouth of Ashley Creek on the Green River, and was composed of nine elements. The mixture was tested at 1X, 2X, 4X, 8X, and 16X where X was the measured environmental concentration (2 μg/L arsenic, 630 μg/L boron, 10 μg/L copper, 5 μg/L molybdenum, 51 μg/L selenate, 8 μg/L selenite, 33 μg/L uranium, 2 μg/L vanadium, and 20 μg/L zinc). Razorback sucker had reduced survival after 60 days exposure to the inorganic mixture at 8X, whereas growth was reduced after 30 and 60 days at 2X and after 90 days at 4X. Bonytail had reduced survival after 30 days exposure at 16X, whereas growth was reduced after 30, 60, and 90 days at 8X. Swimming performance of razorback sucker and bonytail were reduced after 60 and 90 days of exposure at 8X. Whole‐body residues of copper, selenium, and zinc increased in a concentration‐response manner and seemed to be regulated at 90 days of exposure at 4X and lower treatments for razorback sucker, and at 8X and lower for bonytail. Adverse effects occurred in fish with whole‐body residues of copper, selenium, and zinc similar to those causing similar effects in other fish species. Comparison of adverse effect concentrations with measured environmental concentrations showed a high hazard to the two endangered fish. Irrigation activities may be a contributing factor to the decline of these endangered fishes in the middle Green River. ©2000 John Wiley & Sons, Inc. Environ Toxicol 15: 48–64, 2000
Brain Research | 2007
Patrick J. Ronan; Mark P. Gaikowski; Steven J. Hamilton; Kevin J. Buhl; Cliff H. Summers
Hyperammonemia, arising from variety of disorders, leads to severe neurological dysfunction. The mechanisms of ammonia toxicity in brain are not completely understood. This study investigated the effects of ammonia on monoaminergic systems in brains of fathead minnows (Pimephales promelas). Fish serve as a good model system to investigate hyperammonemic effects on brain function since no liver manipulations are necessary to increase endogenous ammonia concentrations. Using high performance liquid chromatography with electrochemical detection, monoamines and some associated metabolites were measured from whole brain homogenate. Adult males were exposed for 48 h to six different concentrations of ammonia (0.01-2.36 mg/l unionized) which bracketed the 96-h LC(50) for this species. Ammonia concentration-dependent decreases were found for the catecholamines (norepinephrine and dopamine) and the indoleamine serotonin (5-HT). After an initial increase in the 5-HT precursor 5-hydroxytryptophan it too decreased with increasing ammonia concentrations. There were also significant increases in the 5-HIAA/5-HT and DOPAC/DA ratios, often used as measures of turnover. There were no changes in epinephrine (Epi) or monoamine catabolites (DOPAC, 5-HIAA) at any ammonia concentrations tested. Results suggest that ammonia causes decreased synthesis while also causing increased release and degradation. Increased release may underlie behavioral reactions to ammonia exposure in fish. This study adds weight to a growing body of evidence demonstrating that ammonia leads to dysfunctional monoaminergic systems in brain which may underlie neurological symptoms associated with human disorders such as hepatic encephalopathy.
Aquatic Toxicology | 2002
Steven J. Hamilton; Kathy M. Holley; Kevin J. Buhl; Fern A. Bullard; L. Ken Weston; Susan F. McDonald
Elevated selenium concentrations documented in water, sediment, and biota in irrigation drain water studies by U.S. Department of the Interior agencies and academia have raised concerns that selenium may be adversely affecting endangered fish in the upper Colorado River basin. The objective of the study was to determine the effects on endangered razorback sucker (Xyrauchen texanus) larvae from exposure to selenium and other trace elements in water and zooplankton collected from sites adjacent to the Colorado River near Grand Junction, CO. A 30-day study was initiated with 5-day-old larvae exposed in a 4 x 4 factor experiment with four food and four water treatments, and the biological endpoints measured were survival, growth, development, and whole-body residues of selenium. Mean selenium concentration in reference water (24-Road) was <0.7 microg/l, in reference food (brine shrimp) was 3.2 microg/g, at Horsethief was 1.6 microg/l in water and 6.0 microg/g in zooplankton, at Adobe Creek was 3.4 microg/l in water and 32 microg/g in zooplankton, and at Walter Walker was 13 microg/l in water and 52 microg/g in zooplankton. Although there were differences in concentrations of inorganic elements in water and biota among the three sites, selenium was apparently the only element elevated to concentrations of concern. Effects on survival were more prominent from dietary exposure compared to waterborne exposure. Selenium concentrations of >or=4.6 microg/g in food organisms adversely affected the survival of razorback sucker larvae. The onset of mortality in larvae exposed to food and water from Walter Walker seemed delayed compared to mortality in larvae exposed to food and water from Horsethief, which has been observed in two other studies. Elevated arsenic in one food source seemed to interact with selenium to reduce the toxic effects of selenium.
Science of The Total Environment | 2002
Steven J. Hamilton; Kathleen M. Holley; Kevin J. Buhl
A hazard assessment was conducted based on information derived from two reproduction studies conducted with endangered razorback suckers (Xyrauchen texanus) at three sites near Grand Junction, CO, USA. Selenium contamination of the upper and lower Colorado River basin has been documented in water, sediment, and biota in studies by US Department of the Interior agencies and academia. Concern has been raised that this selenium contamination may be adversely affecting endangered fish in the upper Colorado River basin. The reproduction studies with razorback suckers revealed that adults readily accumulated selenium in various tissues including eggs, and that 4.6 microg/g of selenium in food organisms caused increased mortality of larvae. The selenium hazard assessment protocol resulted in a moderate hazard at the Horsethief site and high hazards at the Adobe Creek and North Pond sites. The selenium hazard assessment was considered conservative because an on-site toxicity test with razorback sucker larvae using 4.6 microg/g selenium in zooplankton caused nearly complete mortality, in spite of the moderate hazard at Horsethief. Using the margin of uncertainty ratio also suggested a high hazard for effects on razorback suckers from selenium exposure. Both assessment approaches suggested that selenium in the upper Colorado River basin adversely affects the reproductive success of razorback suckers.
Environmental Toxicology and Chemistry | 1996
Mark P. Gaikowski; Steven J. Hamilton; Kevin J. Buhl; Susan F. McDonald; Cliff H. Summers
Environmental Toxicology and Chemistry | 1997
Susan F. McDonald; Steven J. Hamilton; Kevin J. Buhl; James F. Heisinger