Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heiko L. Schoenfuss is active.

Publication


Featured researches published by Heiko L. Schoenfuss.


Environmental Science & Technology | 2010

Antidepressant Pharmaceuticals in Two U.S. Effluent-Impacted Streams: Occurrence and Fate in Water and Sediment, and Selective Uptake in Fish Neural Tissue

Melissa M. Schultz; Edward T. Furlong; Dana W. Kolpin; Stephen L. Werner; Heiko L. Schoenfuss; Larry B. Barber; Vicki S. Blazer; David O. Norris; Alan M. Vajda

Antidepressant pharmaceuticals are widely prescribed in the United States; release of municipal wastewater effluent is a primary route introducing them to aquatic environments, where little is known about their distribution and fate. Water, bed sediment, and brain tissue from native white suckers (Catostomus commersoni) were collected upstream and at points progressively downstream from outfalls discharging to two effluent-impacted streams, Boulder Creek (Colorado) and Fourmile Creek (Iowa). A liquid chromatography/tandem mass spectrometry method was used to quantify antidepressants, including fluoxetine, norfluoxetine (degradate), sertraline, norsertraline (degradate), paroxetine, citalopram, fluvoxamine, duloxetine, venlafaxine, and bupropion in all three sample matrices. Antidepressants were not present above the limit of quantitation in water samples upstream from the effluent outfalls but were present at points downstream at ng/L concentrations, even at the farthest downstream sampling site 8.4 km downstream from the outfall. The antidepressants with the highest measured concentrations in both streams were venlafaxine, bupropion, and citalopram and typically were observed at concentrations of at least an order of magnitude greater than the more commonly investigated antidepressants fluoxetine and sertraline. Concentrations of antidepressants in bed sediment were measured at ng/g levels; venlafaxine and fluoxetine were the predominant chemicals observed. Fluoxetine, sertraline, and their degradates were the principal antidepressants observed in fish brain tissue, typically at low ng/g concentrations. A qualitatively different antidepressant profile was observed in brain tissue compared to streamwater samples. This study documents that wastewater effluent can be a point source of antidepressants to stream ecosystems and that the qualitative composition of antidepressants in brain tissue from exposed fish differs substantially from the compositions observed in streamwater and sediment, suggesting selective uptake.


Environmental Toxicology and Chemistry | 2009

Antidepressants at environmentally relevant concentrations affect predator avoidance behavior of larval fathead minnows (Pimephales promelas).

Meghan M. Painter; Megan A. Buerkley; Matthew L. Julius; Alan M. Vajda; David O. Norris; Larry B. Barber; Edward T. Furlong; Melissa M. Schultz; Heiko L. Schoenfuss

The effects of embryonic and larval exposure to environmentally relevant (ng/L) concentrations of common antidepressants, fluoxetine, sertraline, venlafaxine, and bupropion (singularly and in mixture) on C-start escape behavior were evaluated in fathead minnows (Pimephales promelas). Embryos (postfertilization until hatching) were exposed for 5 d and, after hatching, were allowed to grow in control well water until 12 d old. Similarly, posthatch fathead minnows were exposed for 12 d to these compounds. High-speed (1,000 frames/s) video recordings of escape behavior were collected and transferred to National Institutes of Health Image for frame-by-frame analysis of latency periods, escape velocities, and total escape response (combination of latency period and escape velocity). When tested 12 d posthatch, fluoxetine and venlafaxine adversely affected C-start performance of larvae exposed as embryos. Conversely, larvae exposed for 12 d posthatch did not exhibit altered escape responses when exposed to fluoxetine but were affected by venlafaxine and bupropion exposure. Mixtures of these four antidepressant pharmaceuticals slowed predator avoidance behaviors in larval fathead minnows regardless of the exposure window. The direct impact of reduced C-start performance on survival and, ultimately, reproductive fitness provides an avenue to assess the ecological relevance of exposure in an assay of relatively short duration.


Aquatic Toxicology | 2011

Selective Uptake and Biological Consequences of Environmentally Relevant Antidepressant Pharmaceutical Exposures on Male Fathead Minnows

Melissa M. Schultz; Meghan M. Painter; Stephen E. Bartell; Amanda Logue; Edward T. Furlong; Stephen L. Werner; Heiko L. Schoenfuss

Antidepressant pharmaceuticals have been reported in wastewater effluent at the nanogram to low microgram-per-liter range, and include bupropion (BUP), fluoxetine (FLX), sertraline (SER), and venlafaxine (VEN). To assess the effects of antidepressants on reproductive anatomy, physiology, and behavior, adult male fathead minnows (Pimephales promelas) were exposed for 21 days either to a single concentration of the antidepressants FLX, SER, VEN, or BUP, or to an antidepressant mixture. The data demonstrated that exposure to VEN (305 ng/L and 1104 ng/L) and SER (5.2 ng/L) resulted in mortality. Anatomical alterations were noted within the testes of fish exposed to SER and FLX, both modulators of the neurotransmitter serotonin. Additionally, FLX at 28 ng/L induced vitellogenin in male fish--a common endpoint for estrogenic endocrine disruption. Significant alterations in male secondary sex characteristics were noted with single exposures. Effects of single compound exposures neither carried over, nor became additive in the antidepressant mixtures, and reproductive behavior was not affected. Analysis of brain tissues from the exposed fish suggested increased uptake of FLX, SER and BUP and minimal uptake of VEN when compared to exposure water concentrations. Furthermore, the only metabolite detected consistently in the brain tissues was norfluoxetine. Similar trends of uptake by brain tissue were observed when fish were exposed to antidepressant mixtures. The present study demonstrates that anatomy and physiology, but not reproductive behavior, can be disrupted by exposure to environmental concentrations of some antidepressants. The observation that antidepressant uptake into fish tissues is selective may have consequences on assessing the mode-of-action and effects of these compounds in future studies.


Aquatic Toxicology | 2011

Demasculinization of male fish by wastewater treatment plant effluent

Alan M. Vajda; Larry B. Barber; James L. Gray; Elena M. Lopez; Ashley M. Bolden; Heiko L. Schoenfuss; David O. Norris

Adult male fathead minnows (Pimephales promelas) were exposed to effluent from the City of Boulder, Colorado wastewater treatment plant (WWTP) under controlled conditions in the field to determine if the effluent induced reproductive disruption in fish. Gonadal intersex and other evidence of reproductive disruption were previously identified in white suckers (Catostomus commersoni) in Boulder Creek downstream from this WWTP effluent outfall. Fish were exposed within a mobile flow-through exposure laboratory in July 2005 and August 2006 to WWTP effluent (EFF), Boulder Creek water (REF), or mixtures of EFF and REF for up to 28 days. Primary (sperm abundance) and secondary (nuptial tubercles and dorsal fat pads) sex characteristics were demasculinized within 14 days of exposure to 50% and 100% EFF. Vitellogenin was maximally elevated in both 50% and 100% EFF treatments within 7 days and significantly elevated by 25% EFF within 14 days. The steroidal estrogens 17β-estradiol, estrone, estriol, and 17α-ethynylestradiol, as well as estrogenic alkylphenols and bisphenol A were identified within the EFF treatments and not in the REF treatment. These results support the hypothesis that the reproductive disruption observed in this watershed is due to endocrine-active chemicals in the WWTP effluent.


Science of The Total Environment | 2010

Anthropogenic tracers, endocrine disrupting chemicals, and endocrine disruption in Minnesota lakes

Jeffrey H. Writer; Larry B. Barber; Greg K. Brown; Howard E. Taylor; Richard L. Kiesling; Mark L. Ferrey; Nathan D. Jahns; Steve E. Bartell; Heiko L. Schoenfuss

Concentrations of endocrine disrupting chemicals and endocrine disruption in fish were determined in 11 lakes across Minnesota that represent a range of trophic conditions and land uses (urban, agricultural, residential, and forested) and in which wastewater treatment plant discharges were absent. Water, sediment, and passive polar organic integrative samplers (POCIS) were analyzed for steroidal hormones, alkylphenols, bisphenol A, and other organic and inorganic molecular tracers to evaluate potential non-point source inputs into the lakes. Resident fish from the lakes were collected, and caged male fathead minnows were deployed to evaluate endocrine disruption, as indicated by the biological endpoints of plasma vitellogenin and gonadal histology. Endocrine disrupting chemicals, including bisphenol A, 17β-estradiol, estrone, and 4-nonylphenol were detected in 90% of the lakes at part per trillion concentrations. Endocrine disruption was observed in caged fathead minnows and resident fish in 90% of the lakes. The widespread but variable occurrence of anthropogenic chemicals in the lakes and endocrine disruption in fish indicates that potential sources are diverse, not limited to wastewater treatment plant discharges, and not entirely predictable based on trophic status and land use.


Journal of Zoology | 2003

Kinematics of waterfall climbing in Hawaiian freshwater fishes (Gobiidae): vertical propulsion at the aquatic-terrestrial interface

Heiko L. Schoenfuss; Richard W. Blob

To reach adult habitats, juveniles of three species of Hawaiian gobies (fishes under 3 cm long) climb waterfalls up to 350 m high, over 10 000 times their body length. The demands of moving through such an extreme environment could constrain the range of viable locomotor mechanisms that these fishes use. Previous qualitative observations indicated that Lentipes concolor and Awaous guamensis use ‘powerbursts’ of axial undulation to climb, whereas Sicyopterus stimpsoni ‘inches up’ vertical surfaces by alternately attaching oral and pelvic suckers to the substrate. To compare these propulsive mechanisms and their physiological requirements, high-speed video footage of climbing by juveniles from these three species on an artificial waterfall were collected, and climbing kinematics and performance for the two climbing styles were quantified. Bouts of powerburst climbing by L. concolor and A. guamensis typically begin in or near direct water flow and are initiated by a single, rapid adduction of the pectoral fins. Powerburst climbing bouts are rapid (12.4 ± 1.0 body lengths (BL) s −1 ), but short in duration (0.07 ± 0.02 s) with few continuous locomotor cycles (3.8 ± 1.3 cycles bout −1 ). Powerburst climbers use high amplitude undulations along the entire body, but minimum resultant velocities of these undulations are high (> 6B L s −1 ). This suggests that these species may hybridize terrestrial propulsive mechanisms with aquatic mechanisms. In contrast, climbing by inching inS. stimpsoni involves little axial undulation or fin movement.Sicyopterus stimpsoni typically exit the water outside of direct flow and seem to use terrestrial propulsive mechanisms. As the oral disc attaches to the substrate, it expands to almost twice its resting area, after which the posterior body is pulled upwards; once the pelvic disc attaches, the oral disc releases and the anterior body advances. Climbing bouts include several continuous cycles of disc attachment (11.0 ± 1.4 cycles bout −1 )a nd last several seconds at velocities of 0.21 ± 0.01 BL s −1 .B efore climbing waterfalls during migration to adult habitats, S. stimpsoni undergo a nonfeeding metamorphosis that leads to the development of the mouth as a secondary locomotor organ. The unusual behaviour and ontogenetic strategy ofS.stimpsoni seem to be evolutionary novelties, rather than ancestral retentions, suggesting that the evolution of these features may have been closely correlated. The substantial performance and kinematic distinctions between powerburst and inching climbing indicate that considerable locomotor diversity can evolve even in th ec ontext of extreme environmental demands.


Aquatic Toxicology | 2010

Comparative biological effects and potency of 17α- and 17β-estradiol in fathead minnows.

N.W. Shappell; K.M. Hyndman; Stephen E. Bartell; Heiko L. Schoenfuss

17β-Estradiol is the most potent natural estrogen commonly found in anthropogenically altered environments and has been the focus of many toxicological laboratory studies. However, fewer aquatic toxicological data on the effects of 17α-estradiol, a diastereoisomer of 17β-estradiol, exists in the literature even though it has been found in the aquatic environment, sometimes at higher concentrations than 17β-estradiol. The central objective of this study was to determine how the anatomical, physiological, and behavioral effects of exposure to 17α-estradiol compare to the well-documented effects of 17β-estradiol exposures in aquatic vertebrates. A 21-day flow-through exposure of mature male and female fathead minnows to three concentrations each of 17α- and 17β-estradiol (averaged measured concentrations 27, 72, and 150 ng/L for 17α-estradiol, and 9, 20, and 44 ng/L for β-estradiol, respectively) yielded significant, concentration-dependent differences in plasma vitellogenin concentrations among estradiol-exposed males when compared to fish from an ethanol carrier control. Interstitial cell prominence in the testis of fish was elevated in all estradiol treatments. Aggressiveness of male fish to defend nest sites appeared depressed in many of the higher concentration estradiol treatments (albeit not significantly). No clear effects were observed in female fish. Based on plasma vitellogenin data, it appears that 17β-estradiol is 8-9 times more potent than 17α-estradiol and that the lowest observable effect concentration (LOEC) for 17α-estradiol in fathead minnows is greater than 25 ng/L and may be less than 75 ng/L.


Aquatic Toxicology | 2011

Comparing biological effects and potencies of estrone and 17β-estradiol in mature fathead minnows, Pimephales promelas

A.A. Dammann; N.W. Shappell; Stephen E. Bartell; Heiko L. Schoenfuss

The presence of endocrine active compounds such as estrogens in treated wastewater effluent and their effects on aquatic life are causing concern among aquatic resource managers. In contrast to 17β-estradiol (E2), the steroid hormone produced by all vertebrates, the biological effects of estrone (E1), one of its breakdown products are less understood, even though the aquatic concentrations of E1 are often higher than those of E2. The central hypothesis of this study was that at environmental concentrations, E1 has estrogenic effects in fish, with increased vitellogenin concentrations and decreased reproductive success in both male and female fathead minnows, as found with E2. In two replicate experiments, we exposed mature fathead minnows to three concentrations of each estrogen for 21 days in a flow-through exposure system and measured a broad suite of anatomical (body indices, histopathology), physiological (plasma vitellogenin), behavioral (nest defense), and reproductive (fecundity, fertility, hatching) endpoints. These endpoints have previously been associated with adverse effects of estrogenic exposures. While body length and weight parameters were unaltered by exposure, secondary sex characteristics exhibited an exposure concentrated-related decline in male fathead minnows. Interestingly, low concentrations of estrone (≈ 15 ng/L) enhanced the aggressiveness of male fathead minnows in a behavioral assay. Vitellogenin concentrations in male fish increased with higher concentrations of both estrogens, but remained unchanged in all female treatments. A decrease in fecundity was observed at high concentrations of E2 as compared with control minnows. These results suggest that E1, at concentrations previously found in waters receiving wastewater effluent, can have reproductive effects on fish.


Aquatic Toxicology | 2009

Predator avoidance performance of larval fathead minnows (Pimephales promelas) following short-term exposure to estrogen mixtures

Meghan R. McGee; Matthew L. Julius; Alan M. Vajda; David O. Norris; Larry B. Barber; Heiko L. Schoenfuss

Aquatic organisms exposed to endocrine disrupting compounds (EDCs) at early life-stages may have reduced reproductive fitness via disruption of reproductive and non-reproductive behavioral and physiological pathways. Survival to reproductive age relies upon optimal non-reproductive trait expression, such as adequate predator avoidance responses, which may be impacted through EDC exposure. During a predator-prey confrontation, larval fish use an innate C-start escape behavior to rapidly move away from an approaching threat. We tested the hypotheses that (1) larval fathead minnows exposed to estrogens, a primary class of EDCs, singularly or in mixture, suffer a reduced ability to perform an innate C-start behavior when faced with a threat stimulus; (2) additive effects will cause greater reductions in C-start behavior; and (3) effects will differ among developmental stages. In this study, embryos (post-fertilization until hatching) were exposed for 5 days to environmentally relevant concentrations of estrone (E1), 17beta-estradiol (E2), and 17alpha-ethinylestradiol (EE2) singularly and in mixture. Exposed embryos were allowed to hatch and grow in control well water until 12 days old. Similarly, post-hatch fathead minnows were exposed for 12 days to these compounds. High-speed (1000frames/s) video recordings of escape behavior were collected and transferred to National Institutes of Health Image for frame-by-frame analysis of latency period, escape velocity, and total escape response (combination of latency period and escape velocity). When tested 12 days post-hatch, only E1 adversely affected C-start performance of larvae exposed as embryos. Conversely, larvae exposed for 12 days post-hatch did not exhibit altered escape responses when exposed to E1, while adverse responses were seen in E2 and the estrogen mixture. Ethinylestradiol exposure did not elicit changes in escape behaviors at either developmental stage. The direct impact of reduced C-start performance on survival, and ultimately, reproductive fitness provides an avenue to assess the ecological relevance of exposure in an assay of relatively short duration.


Science of The Total Environment | 2011

Effects of biologically-active chemical mixtures on fish in a wastewater-impacted urban stream

Larry B. Barber; Gregory K. Brown; Todd G. Nettesheim; Elizabeth W. Murphy; Stephen E. Bartell; Heiko L. Schoenfuss

Stream flow in urban aquatic ecosystems often is maintained by water-reclamation plant (WRP) effluents that contain mixtures of natural and anthropogenic chemicals that persist through the treatment processes. In effluent-impacted streams, aquatic organisms such as fish are continuously exposed to biologically-active chemicals throughout their life cycles. The North Shore Channel of the Chicago River (Chicago, Illinois) is part of an urban ecosystem in which >80% of the annual flow consists of effluent from the North Side WRP. In this study, multiple samplings of the effluent and stream water were conducted and fish (largemouth bass and carp) were collected on 2 occasions from the North Shore Channel. Fish also were collected once from the Outer Chicago Harbor in Lake Michigan, a reference site not impacted by WRP discharges. Over 100 organic chemicals with differing behaviors and biological effects were measured, and 23 compounds were detected in all of the water samples analyzed. The most frequently detected and highest concentration (>100μg/L) compounds were ethylenediaminetetraacetic acid and 4-nonylphenolmono-to-tetraethoxycarboxylic acids. Other biologically-active chemicals including bisphenol A, 4-nonylphenol, 4-nonylphenolmono-to-tetraethoxylates, 4-tert-octylphenol, and 4-tert-octylphenolmono-to-tetraethoxylates were detected at lower concentrations (<5μg/L). The biogenic steroidal hormones 17β-estradiol, estrone, testosterone, 4-androstene-3,17-dione, and cis-androsterone were detected at even lower concentrations (<0.005μg/L). There were slight differences in concentrations between the North Side WRP effluent and the North Shore Channel, indicating minimal in-stream attenuation. Fish populations are continuously exposed to mixtures of biologically-active chemicals because of the relative persistency of the chemicals with respect to stream hydraulic residence time, and the lack of a fresh water source for dilution. The majority of male fish exhibited vitellogenin induction, a physiological response consistent with exposure to estrogenic compounds. Tissue-level signs of reproductive disruption, such as ovatestis, were not observed.

Collaboration


Dive into the Heiko L. Schoenfuss's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Larry B. Barber

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel C. Rearick

St. Cloud State University

View shared research outputs
Top Co-Authors

Avatar

Kathy E. Lee

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Matthew L. Julius

St. Cloud State University

View shared research outputs
Top Co-Authors

Avatar

Edward T. Furlong

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard L. Kiesling

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge