Kevin Killeen
Agilent Technologies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kevin Killeen.
Proteomics | 2009
Caroline S. Chu; Milady R. Niñonuevo; Brian H. Clowers; Patrick D. Perkins; Hyun Joo An; Hongfeng Yin; Kevin Killeen; Suzanne Miyamoto; Rudolf Grimm; Carlito B. Lebrilla
Protein glycosylation involves the addition of monosaccharides in a stepwise process requiring no glycan template. Therefore, identifying the numerous glycoforms, including isomers, can help elucidate the biological function(s) of particular glycans. A method to assess the diversity of the N‐linked oligosaccharides released from human serum without derivatization has been developed using on‐line nanoLC and high resolution TOF MS. The N‐linked oligosaccharides were analyzed with MALDI FT‐ICR MS and microchip LC MS (HPLC–Chip/TOF MS). Two microfluidic chips were employed, the glycan chip (40 nL enrichment column, 43×0.075 mm2 i.d. analytical column) and the high capacity chip (160 nL enrichment column, 140×0.075 mm2 i.d. analytical column), both with graphitized carbon as the stationary phase. Both chips offered good sensitivity and reproducibility in separating a heterogeneous mixture of neutral and anionic oligosaccharides between injections. Increasing the length and volume of the enrichment and the analytical columns improved resolution of the peaks. Complex type N‐linked oligosaccharides were the most abundant oligosaccharides in human serum accounting for ∼96% of the total glycans identified, while hybrid and high mannose type oligosaccharides comprise the remaining ∼4%.
Journal of Chromatography A | 2008
Pavel A. Levkin; Sebastiaan Eeltink; Thomas R. Stratton; Reid Brennen; Karla M. Robotti; Hongfeng Yin; Kevin Killeen; Frantisek Svec; Jean M. J. Fréchet
Poly(lauryl methacrylate-co-ethylene dimethacrylate) and poly(styrene-co-divinylbenzene) stationary phases in monolithic format have been prepared by thermally initiated free radical polymerization within polyimide chips featuring channels having a cross-section of 200micromx200microm and a length of 6.8cm. These chips were then used for the separation of a mixture of proteins including ribonuclease A, myoglobin, cytochrome c, and ovalbumin, as well as peptides. The separations were monitored by UV adsorption. Both the monolithic phases based on methacrylate and on styrene chemistries enabled the rapid baseline separation of most of the test mixtures. Best performance was achieved with the styrenic monolith leading to fast baseline separation of all four proteins in less than 2.5min. The in situ monolith preparation process affords microfluidic devices exhibiting good batch-to-batch and injection-to-injection repeatability.
Analytical Chemistry | 2009
Maggie A. Bynum; Hongfeng Yin; Katherine A. Felts; Yvonne M. Lee; Craig R. Monell; Kevin Killeen
A novel polymeric microfluidic device with an on-chip enzyme reactor has been developed for the characterization of recombinant glycoproteins. The enzyme reactor chip packed with PNGase F-modified solid support material was combined with a microfluidic glycan cleanup chip and a commercially available HPLC-chip to perform glycoprotein deglycosylation, protein removal, glycan capture, glycan LC separation, and nanoelectrospray into a time-of-flight mass spectrometry (TOF-MS) system. With this integrated chip, the combined sample preparation and sample analysis time was reduced from multiple hours to less than 10 min. A once tedious and time-consuming glycan analysis workflow is now integrated into an HPLC-chip device. Glycan profiling analysis has been achieved with as little as 100 ng of monoclonal antibody. Furthermore, a single chip was shown to retain activity and perform equivalently for over 250 replicate glycan profiles from a recombinant antibody.
Analytical Chemistry | 2011
Yu Huang; Xiaofeng Shi; Xiang Yu; Nancy Leymarie; Gregory O. Staples; Hongfeng Yin; Kevin Killeen; Joseph Zaia
Microfluidic chip-based hydrophilic interaction chromatography (HILIC) is a useful separation system for liquid chromatography-mass spectrometry (LC-MS) in compositional profiling of heparan sulfate (HS) oligosaccharides; however, ions observed using HILIC LC-MS are low in charge. Tandem MS of HS oligosaccharide ions with low charge results in undesirable losses of SO(3) from precursor ions during collision induced dissociation. One solution is to add metal cations to stabilize sulfate groups. Another is to add a nonvolatile, polar compound such as sulfolane, a molecule known to supercharge proteins, to produce a similar effect for oligosaccharides. We demonstrate use of a novel pulsed makeup flow (MUF) HPLC-chip. The chip enables controlled application of additives during specified chromatographic time windows and thus minimizes the extent to which nonvolatile additives build up in the ion source. The pulsed MUF system was applied to LC-MS/MS of HS oligosaccharides. Metal cations and sulfolane were tested as additives. The most promising results were obtained for sulfolane, for which supercharging of the oligosaccharide ions increased their signal strengths relative to controls. Tandem MS of these supercharged precursor ions showed decreased abundances of product ions from sulfate losses yet more abundant product ions from backbone cleavages.
Light-Emitting Diodes: Research, Manufacturing, and Applications IV | 2000
Michael R. Krames; Gina L Christenson; Dave Collins; Lou W. Cook; M. G. Craford; Allison Lynn Edwards; R. M. Fletcher; Nathan F. Gardner; Werner Goetz; William R. Imler; Eric Johnson; R Scott Kern; Reena Khare; F.A. Kish; Chris Lowery; M. J. Ludowise; Richard Mann; M. Maranowski; S. A. Maranowski; Paul S. Martin; J. O'Shea; Serge L Rudaz; Dan A. Steigerwald; James W. Thompson; Jonathan J. Wierer; Jingxi Yu; David Basile; Ying-Lan Chang; Ghulam Hasnain; M. Heuschen
Currently, commercial LEDs based on AlGaInN emit light efficiently from the ultraviolet-blue to the green portion of the visible wavelength spectrum. Data are presented on AlGaInN LEDs grown by organometallic vapor phase epitaxy (OMVPE). Designs for high-power AlGaInN LEDs are presented along with their performance in terms of output power and efficiency. Finally, present and potential applications for high-power AlGaInN LEDs, including traffic signals and contour lighting, are discussed.
Journal of Separation Science | 2009
Karla M. Robotti; Hongfeng Yin; Reid Brennen; Lukas Trojer; Kevin Killeen
Polyimide HPLC-Chip devices containing poly(methylstyrene-bis-p-vinylphenyl)ethane (MS/BVPE) stationary phase within the device channels and with wall attachment were prepared by thermally initiated free radical polymerization. The microfluidic devices were coupled to both UV and MS detectors. The potential of the MS/BVPE monolith as an alternative separation media within chip devices was investigated by side-by-side comparisons to particulate media within commercial devices. The chromatographic behavior of this stationary phase was comparable to particulate media for separations of proteins as the average peak width at half-height was equal (6.2 s) for a separation within 8 min under gradient elution conditions. The ability to control the porosity characteristics of the MS/BVPE monolith with changes in polymerization time also extended its utility into small analyte (< 500 Da) applications, although more optimization is needed to match conventional RP media for these applications. The good mechanical stability of the MS/BVPE monolith within the microdevices enabled excellent run-to-run repeatability (%RSD retention time (< or = 0.16) and chip-to-chip reproducibility (%RSD retention time (1.4). The use of this material within enrichment channels also shows its potential value in more complex work flows.
Journal of Chromatography A | 2017
David P. Bishop; Lucas Blanes; Alexander B. Wilson; Thor Wilbanks; Kevin Killeen; Rudolf Grimm; Ross Wenzel; Derek Major; Mirek Macka; David Clarke; Robin Schmid; Nerida Cole; Philip Doble
The Agilent Chip Cube Interface is a microfluidic chip-based technology originally designed for nanospray molecular mass spectrometry in which the sample enrichment, nano-column, tubing, connectors and spray tip were integrated into a single biocompatible chip. Here we describe the hyphenation of the Chip Cube Interface to ICP-MS via modification of the standard HPLC chip design and a new total consumption nebuliser suitable for flow rates as low as 300nLmin-1. The potential of the instrument to eliminate common nanoLC - ICP-MS shortcomings such as leaks, blockages and band-broadening was demonstrated via analysis of cyanocobalamin in equine plasma. The method was linear over three orders of magnitude with an r2 of 0.9999, the peak area repeatability was 1.9% (n=7), and the detection limit was 14ngmL-1. This novel configuration of the Chip Cube Interface coupled to ICP-MS is a suitable platform for the analysis of biomolecules associated with trace metals and speciation applications.
PLOS ONE | 2011
Gregory Richmond; Htet Khine; Tina T. Zhou; Daniel E. Ryan; Tony Brand; Mary T. McBride; Kevin Killeen
Multiplexed detection assays that analyze a modest number of nucleic acid targets over large sample sets are emerging as the preferred testing approach in such applications as routine pathogen typing, outbreak monitoring, and diagnostics. However, very few DNA testing platforms have proven to offer a solution for mid-plexed analysis that is high-throughput, sensitive, and with a low cost per test. In this work, an enhanced genotyping method based on MassCode technology was devised and integrated as part of a high-throughput mid-plexing analytical system that facilitates robust qualitative differential detection of DNA targets. Samples are first analyzed using MassCode PCR (MC-PCR) performed with an array of primer sets encoded with unique mass tags. Lambda exonuclease and an array of MassCode probes are then contacted with MC-PCR products for further interrogation and target sequences are specifically identified. Primer and probe hybridizations occur in homogeneous solution, a clear advantage over micro- or nanoparticle suspension arrays. The two cognate tags coupled to resultant MassCode hybrids are detected in an automated process using a benchtop single quadrupole mass spectrometer. The prospective value of using MassCode probe arrays for multiplexed bioanalysis was demonstrated after developing a 14plex proof of concept assay designed to subtype a select panel of Salmonella enterica serogroups and serovars. This MassCode system is very flexible and test panels can be customized to include more, less, or different markers.
Archive | 2001
Kevin Killeen; Hongfeng Yin; Sharmila Udiavar; Reid Brennen; Mark Juanitas; Elaine Poon; Dan Sobek; Tom van de Goor
We report the use of direct write UV laser ablation to create microstructures in polymer film substrates. An integrated chip-MS device is fabricated combining a microfluidic channel with an electrospray tip. Mass spectral data is presented demonstrating protein sample compatibility and excellent spray stability.
Archive | 2008
Mihaela Ghitun; Eric Bonneil; Christelle Pomiès; Maria Marcantonio; Hongfeng Yin; Kevin Killeen; Pierre Thibault
The pursuit of sensitive and reproducible protein expression and identification from minute amounts of cell extracts presents significant analytical challenges and new opportunities for the development of efficient separation techniques. The compelling advantages of microfluidics in terms of speed, ...