Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin R. Cook is active.

Publication


Featured researches published by Kevin R. Cook.


Genome Biology | 2007

The ribosomal protein genes and Minute loci of Drosophila melanogaster

Steven J. Marygold; John Roote; Gunter Reuter; Andrew Lambertsson; Michael Ashburner; Gillian Millburn; Paul M. Harrison; Zhan Yu; Naoya Kenmochi; Thomas C. Kaufman; Sally J. Leevers; Kevin R. Cook

BackgroundMutations in genes encoding ribosomal proteins (RPs) have been shown to cause an array of cellular and developmental defects in a variety of organisms. In Drosophila melanogaster, disruption of RP genes can result in the Minute syndrome of dominant, haploinsufficient phenotypes, which include prolonged development, short and thin bristles, and poor fertility and viability. While more than 50 Minute loci have been defined genetically, only 15 have so far been characterized molecularly and shown to correspond to RP genes.ResultsWe combined bioinformatic and genetic approaches to conduct a systematic analysis of the relationship between RP genes and Minute loci. First, we identified 88 genes encoding 79 different cytoplasmic RPs (CRPs) and 75 genes encoding distinct mitochondrial RPs (MRPs). Interestingly, nine CRP genes are present as duplicates and, while all appear to be functional, one member of each gene pair has relatively limited expression. Next, we defined 65 discrete Minute loci by genetic criteria. Of these, 64 correspond to, or very likely correspond to, CRP genes; the single non-CRP-encoding Minute gene encodes a translation initiation factor subunit. Significantly, MRP genes and more than 20 CRP genes do not correspond to Minute loci.ConclusionThis work answers a longstanding question about the molecular nature of Minute loci and suggests that Minute phenotypes arise from suboptimal protein synthesis resulting from reduced levels of cytoribosomes. Furthermore, by identifying the majority of haplolethal and haplosterile loci at the molecular level, our data will directly benefit efforts to attain complete deletion coverage of the D. melanogaster genome.


Insect Biochemistry and Molecular Biology | 2010

A spinosyn-sensitive Drosophila melanogaster nicotinic acetylcholine receptor identified through chemically induced target site resistance, resistance gene identification, and heterologous expression

Gerald B. Watson; Scott Chouinard; Kevin R. Cook; Chaoxian Geng; Jim M. Gifford; Gary D. Gustafson; James M. Hasler; Ignacio M. Larrinua; Ted Letherer; Jon C. Mitchell; William L. Pak; Vincent L. Salgado; Thomas C. Sparks; Geoff E. Stilwell

Strains of Drosophila melanogaster with resistance to the insecticides spinosyn A, spinosad, and spinetoram were produced by chemical mutagenesis. These spinosyn-resistant strains were not cross-resistant to other insecticides. The two strains that were initially characterized were subsequently found to have mutations in the gene encoding the nicotinic acetylcholine receptor (nAChR) subunit Dalpha6. Subsequently, additional spinosyn-resistant alleles were generated by chemical mutagenesis and were also found to have mutations in the gene encoding Dalpha6, providing convincing evidence that Dalpha6 is a target site for the spinosyns in D. melanogaster. Although a spinosyn-sensitive receptor could not be generated in Xenopus laevis oocytes simply by expressing Dalpha6 alone, co-expression of Dalpha6 with an additional nAChR subunit, Dalpha5, and the chaperone protein ric-3 resulted in an acetylcholine- and spinosyn-sensitive receptor with the pharmacological properties anticipated for a native nAChR.


Fly | 2010

New research resources at the Bloomington Drosophila Stock Center

Kevin R. Cook; Annette L. Parks; Luke M. Jacobus; Thomas C. Kaufman; Kathleen A. Matthews

The Bloomington Drosophila Stock Center (BDSC) is a primary source of Drosophila stocks for researchers all over the world. It houses over 27,000 unique fly lines and distributed over 160,000 samples of these stocks this past year. This report provides a brief overview of significant recent events at the BDSC with a focus on new stock sets acquired in the past year, including stocks for φC31 transformation, RNAi knockdown of gene expression, and SNP and quantitative trait loci discovery. We also describe additions to sets of insertions and molecularly defined chromosomal deficiencies, the creation of a new Deficiency Kit, and planned additions of X chromosome duplication sets.


Chromosoma | 2004

A high proportion of genes involved in position effect variegation also affect chromosome inheritance

Hiep D. Le; Kathryn M. Donaldson; Kevin R. Cook; Gary H. Karpen

Suppressors and enhancers of position effect variegation (PEV) have been linked to the establishment and maintenance of heterochromatin. The presence of centromeres and other inheritance elements in heterochromatic regions suggests that suppressors and enhancers of PEV, Su(var) s and E(var)s [collectively termed Mod(var)s], may be required for chromosome inheritance. In order to test this hypothesis, we screened 59 ethyl methanesulfonate-generated Drosophila Mod(var)s for dominant effects on the partially compromised inheritance of a minichromosome (J21A) missing a portion of the genetically defined centromere. Nearly half of these Mod(var)s significantly increased or decreased the transmission of J21A. Analyses of homozygous mutant larval neuroblasts suggest that these mutations affect cell cycle progression and native chromosome morphology. Five out of six complementation groups tested displayed mitotic abnormalities, including phenotypes such as telomere fusions, overcondensed chromosomes, and low mitotic index. We conclude that Mod(var)s as a group are highly enriched for genes that encode essential inheritance functions. We propose that a primary function of Mod(var)s is to promote chromosome inheritance, and that the gene silencing phenotype associated with PEV may be a secondary consequence of the heterochromatic structures required to carry out these functions.


G3: Genes, Genomes, Genetics | 2016

Phenotypes Associated with Second Chromosome P Element Insertions in Drosophila melanogaster

Lily Kahsai; Gillian Millburn; Kevin R. Cook

In Drosophila melanogaster, P element transposition has been a productive means of insertional mutagenesis. Thousands of genes have been tagged with natural and engineered P element constructs. Nevertheless, chromosomes carrying P element insertions tend to have high levels of background mutations from P elements inserting and excising during transposition. Consequently, the phenotypes seen when P element-bearing chromosomes are homozygous are often not attributable to the P insertions themselves. In this study, 178 strains in the Bloomington Drosophila Stock Center collection with P insertions on the second chromosome were complementation tested against molecularly defined chromosomal deletions and previously characterized single-gene mutations to determine if recessive lethality or sterility is associated with the P insertions rather than background mutations. This information should prove valuable to geneticists using these strains for experimental studies of gene function.


bioRxiv | 2015

Genome-wide expression profiling Drosophila melanogaster deficiency heterozygotes reveals diverse genomic responses.

Hangnoh Lee; Dong-Yeon Cho; Cale Whitworth; Robert Eisman; Melissa Phelps; John Roote; Thomas C. Kaufman; Kevin R. Cook; Steven Russell; Teresa M. Przytycka; Brian Oliver

Deletions, commonly referred to as deficiencies by Drosophila geneticists, are valuable tools for mapping genes and for genetic pathway discovery via dose-dependent suppressor and enhancer screens. More recently, it has become clear that deviations from normal gene dosage are associated with multiple disorders in a range of species including humans. While we are beginning to understand some of the transcriptional effects brought about by gene dosage changes and the chromosome rearrangement breakpoints associated with them, much of this work relies on isolated examples. We have systematically examined deficiencies on the left arm of chromosome 2 and characterize gene-by-gene dosage responses that vary from collapsed expression through modest partial dosage compensation to full or even over compensation. We found negligible long-range effects of creating novel chromosome domains at deletion breakpoints, suggesting that cases of changes in gene regulation due to altered nuclear architecture are rare. These rare cases include trans de-repression when deficiencies delete chromatin characterized as repressive in other studies. Generally, effects of breakpoints on expression are promoter proximal (~100 bp) or within the gene body. Genome-wide effects of deficiencies are observed at genes with regulatory relationships to genes within the deleted segments, highlighting the subtle expression network defects in these sensitized genetic backgrounds. Author summary Deletions alter gene dose in heterozygotes and bring distant regions of the genome into juxtaposition. We find that the transcriptional dose response is generally varied, gene-specific, and coherently propagates into gene expression regulatory networks. Analysis of deletion heterozygote expression profiles indicates that distinct genetic pathways are weakened in adult flies bearing different deletions even though they show minimal or no overt phenotypes. While there are exceptions, breakpoints have a minimal effect on the expression of flanking genes, despite the fact that different regions of the genome are brought into contact and that important elements such as insulators are deleted. These data suggest that there is little effect of nuclear architecture and long-range enhancer and/or silencer promoter contact on gene expression in the compact Drosophila genome.


Science | 2015

Safeguarding gene drive experiments in the laboratory: Multiple strategies are needed to ensure safe gene drive experiments

Omar S. Akbari; Hugo J. Bellen; Ethan Bier; Simon L. Bullock; Austin Burt; George M. Church; Kevin R. Cook; Peter Duchek; Owain R. Edwards; Kevin M. Esvelt; Valentino M. Gantz; Kent G. Golic; Scott J. Gratz; Melissa M. Harrison; Keith R. Hayes; Anthony A. James; Thomas C. Kaufman; Juergen A. Knoblich; Harmit S. Malik; Kathy A. Matthews; Kate M. O'Connor-Giles; Annette L. Parks; Norbert Perrimon; Fillip Port; Steven Russell; Ryu Ueda; Jill Wildonger

Multiple stringent confinement strategies should be used whenever possible Gene drive systems promote the spread of genetic elements through populations by assuring they are inherited more often than Mendelian segregation would predict (see the figure). Natural examples of gene drive from Drosophila include sex-ratio meiotic drive, segregation distortion, and replicative transposition. Synthetic drive systems based on selective embryonic lethality or homing endonucleases have been described previously in Drosophila melanogaster (1–3), but they are difficult to build or are limited to transgenic populations. In contrast, RNAguided gene drives based on the CRISPR/Cas9 nuclease can, in principle, be constructed by any laboratory capable of making transgenic organisms (4). They have tremendous potential to address global problems in health, agriculture, and conservation, but their capacity to alter wild populations outside the laboratory demands caution (4–7). Just as researchers working with self-propagating pathogens must ensure that these agents do not escape to the outside world, scientists working in the laboratory with gene drive constructs are responsible for keeping them confined (4, 6, 7).


Genes & Development | 2001

The Drosophila Su(var)2-10 locus regulates chromosome structure and function and encodes a member of the PIAS protein family

Kumar L. Hari; Kevin R. Cook; Gary H. Karpen


Proceedings of the National Academy of Sciences of the United States of America | 1994

A rosy future for heterochromatin

Kevin R. Cook; Gary H. Karpen


Archive | 2006

Nouveaux essais a sous-unites recepteur d'acetylcholine nicotinique

Nailah Orr; Gerald B. Watson; Gary D. Gustafson; James M. Hasler; Chaoxian Geng; Kevin R. Cook; Vincent L. Salgado; Scott Chouinard

Collaboration


Dive into the Kevin R. Cook's collaboration.

Top Co-Authors

Avatar

Gary H. Karpen

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Thomas C. Kaufman

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Annette L. Parks

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge