Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin T. Seale is active.

Publication


Featured researches published by Kevin T. Seale.


Lab on a Chip | 2009

Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells

Shannon Faley; Mhairi Copland; Donald Wlodkowic; Walter Kolch; Kevin T. Seale; John P. Wikswo; Jonathan M. Cooper

Stem cells hold great promise as a means of treating otherwise incurable, degenerative diseases due to their ability both to self-renew and differentiate. However, stem cell damage can also play a role in the disease with the formation of solid tumors and leukaemias such as chronic myeloid leukaemia (CML), a hematopoietic stem cell (HSC) disorder. Despite recent medical advances, CML remains incurable by drug therapy. Understanding the mechanisms which govern chemoresistance of individual stem cell leukaemias may therefore require analysis at the single cell level. This task is not trivial using current technologies given that isolating HSCs is difficult, expensive, and inefficient due to low cell yield from patients. In addition, hematopoietic cells are largely non-adherent and thus difficult to study over time using conventional cell culture techniques. Hence, there is a need for new microfluidic platforms that allow the functional interrogation of hundreds of non-adherent single cells in parallel. We demonstrate the ability to perform assays, normally performed on the macroscopic scale, within the microfluidic platform using minimal reagents and low numbers of primary cells. We investigated normal and CML stem cell responses to the tyrosine kinase inhibitor, dasatinib, a drug approved for the treatment of CML. Dynamic, on-chip three-color cell viability assays revealed that differences in the responses of normal and CML stem/progenitor cells to dasatinib were observed even in the early phases of exposure, during which time normal cells exhibit a significantly elevated cell death rate, as compared to both controls and CML cells. Further studies show that dasatinib does, however, markedly reduce CML stem/progenitor cell migration in situ.


Lab on a Chip | 2008

Microfluidic platform for real-time signaling analysis of multiple single T cells in parallel.

Shannon Faley; Kevin T. Seale; Jacob J. Hughey; David K. Schaffer; Scott E. VanCompernolle; Brett A. McKinney; Franz J. Baudenbacher; Derya Unutmaz; John P. Wikswo

Deciphering the signaling pathways that govern stimulation of naïve CD4+ T helper cells by antigen-presenting cells via formation of the immunological synapse is key to a fundamental understanding of the progression of successful adaptive immune response. The study of T cell-APC interactions in vitro is challenging, however, due to the difficulty of tracking individual, non-adherent cell pairs over time. Studying single cell dynamics over time reveals rare, but critical, signaling events that might be averaged out in bulk experiments, but these less common events are undoubtedly important for an integrated understanding of a cellular response to its microenvironment. We describe a novel application of microfluidic technology that overcomes many limitations of conventional cell culture and enables the study of hundreds of passively sequestered hematopoietic cells for extended periods of time. This microfluidic cell trap device consists of 440 18 micromx18 micromx10 microm PDMS, bucket-like structures opposing the direction of flow which serve as corrals for cells as they pass through the cell trap region. Cell viability analysis revealed that more than 70% of naïve CD4+ T cells (TN), held in place using only hydrodynamic forces, subsequently remain viable for 24 hours. Cytosolic calcium transients were successfully induced in TN cells following introduction of chemical, antibody, or cellular forms of stimulation. Statistical analysis of TN cells from a single stimulation experiment reveals the power of this platform to distinguish different calcium response patterns, an ability that might be utilized to characterize T cell signaling states in a given population. Finally, we investigate in real time contact- and non-contact-based interactions between primary T cells and dendritic cells, two main participants in the formation of the immunological synapse. Utilizing the microfluidic traps in a daisy-chain configuration allowed us to observe calcium transients in TN cells exposed only to media conditioned by secretions of lipopolysaccharide-matured dendritic cells, an event which is easily missed in conventional cell culture where large media-to-cell ratios dilute cellular products. Further investigation into this intercellular signaling event indicated that LPS-matured dendritic cells, in the absence of antigenic stimulation, secrete chemical signals that induce calcium transients in T(N) cells. While the stimulating factor(s) produced by the mature dendritic cells remains to be identified, this report illustrates the utility of these microfluidic cell traps for analyzing arrays of individual suspension cells over time and probing both contact-based and intercellular signaling events between one or more cell populations.


IEEE Transactions on Biomedical Engineering | 2013

Engineering Challenges for Instrumenting and Controlling Integrated Organ-on-Chip Systems

John P. Wikswo; Frank E. Block; David E. Cliffel; Cody R. Goodwin; Christina C. Marasco; Dmitry A. Markov; David L. McLean; John A. McLean; Jennifer R. McKenzie; Ronald S. Reiserer; Philip C. Samson; David K. Schaffer; Kevin T. Seale; Stacy D. Sherrod

The sophistication and success of recently reported microfabricated organs-on-chips and human organ constructs have made it possible to design scaled and interconnected organ systems that may significantly augment the current drug development pipeline and lead to advances in systems biology. Physiologically realistic live microHuman (μHu) and milliHuman (mHu) systems operating for weeks to months present exciting and important engineering challenges such as determining the appropriate size for each organ to ensure appropriate relative organ functional activity, achieving appropriate cell density, providing the requisite universal perfusion media, sensing the breadth of physiological responses, and maintaining stable control of the entire system, while maintaining fluid scaling that consists of ~5 mL for the mHu and ~5 μL for the μHu. We believe that successful mHu and μHu systems for drug development and systems biology will require low-volume microdevices that support chemical signaling, microfabricated pumps, valves and microformulators, automated optical microscopy, electrochemical sensors for rapid metabolic assessment, ion mobility-mass spectrometry for real-time molecular analysis, advanced bioinformatics, and machine learning algorithms for automated model inference and integrated electronic control. Toward this goal, we are building functional prototype components and are working toward top-down system integration.


Stem Cell Research & Therapy | 2013

Neurovascular unit on a chip: implications for translational applications

Donald J Alcendor; Frank E. Block; David E. Cliffel; John Scott Daniels; Kate L. J. Ellacott; Cody R. Goodwin; Lucas H. Hofmeister; Deyu Li; Dmitry A. Markov; Jody C. May; Lisa J. McCawley; BethAnn McLaughlin; John A. McLean; Kevin D. Niswender; Virginia Pensabene; Kevin T. Seale; Stacy D. Sherrod; Hak-Joon Sung; David L. Tabb; Donna J. Webb; John P. Wikswo

The blood-brain barrier (BBB) dynamically controls exchange between the brain and the body, but this interaction cannot be studied directly in the intact human brain or sufficiently represented by animal models. Most existing in vitro BBB models do not include neurons and glia with other BBB elements and do not adequately predict drug efficacy and toxicity. Under the National Institutes of Health Microtissue Initiative, we are developing a three-dimensional, multicompartment, organotypic microphysiological system representative of a neurovascular unit of the brain. The neurovascular unit system will serve as a model to study interactions between the central nervous system neurons and the cerebral spinal fluid (CSF) compartment, all coupled to a realistic blood-surrogate supply and venous return system that also incorporates circulating immune cells and the choroid plexus. Hence all three critical brain barriers will be recapitulated: blood-brain, brain-CSF, and blood-CSF. Primary and stem cell-derived human cells will interact with a variety of agents to produce critical chemical communications across the BBB and between brain regions. Cytomegalovirus, a common herpesvirus, will be used as an initial model of infections regulated by the BBB. This novel technological platform, which combines innovative microfluidics, cell culture, analytical instruments, bioinformatics, control theory, neuroscience, and drug discovery, will replicate chemical communication, molecular trafficking, and inflammation in the brain. The platform will enable targeted and clinically relevant nutritional and pharmacologic interventions for or prevention of such chronic diseases as obesity and acute injury such as stroke, and will uncover potential adverse effects of drugs. If successful, this project will produce clinically useful technologies and reveal new insights into how the brain receives, modifies, and is affected by drugs, other neurotropic agents, and diseases.


IEEE Transactions on Automation Science and Engineering | 2013

Automated Cell Transport in Optical Tweezers-Assisted Microfluidic Chambers

Sagar Chowdhury; Petr Svec; Chenlu Wang; Kevin T. Seale; John P. Wikswo; Wolfgang Losert; Satyandra K. Gupta

In this paper, we present a physics-aware, planning approach for automated transport of cells in an optical tweezers-assisted microfluidic chamber. The approach can be used for making a uniform distribution of cells inside the chamber to allow the study of a variety of biological processes, including cell signaling. Fluid forces inside the chamber, modeled using computational fluid dynamics, are incorporated into the widely used Langevin equation to simulate the motion of cells. The developed simulator was used for building a map that contains probabilities of a cell successfully reaching one of the outlets of the chamber from different locations under the influence of the fluid flow. The developed planner not only generates collision-free paths that exploit the fluid flow inside the chamber but also utilizes the offline generated simulation data to decide suitable locations for releasing the cells. This ensures fast and robust cell transport, while minimizing the required laser power and operational time. The planner is based on the heuristic D* Lite algorithm that employs a specific cost function for searching over a novel state-action space representation. The effectiveness of the planning algorithm is demonstrated using both simulation and physical experiments in a microfluidics-optical tweezers hybrid manipulation setup.


Iet Systems Biology | 2010

Towards monitoring real-time cellular response using an integrated microfluidics-matrix assisted laser desorption ionisation/nanoelectrospray ionisation-ion mobility-mass spectrometry platform.

Jeffrey R. Enders; Christina C. Marasco; Ayeeshik Kole; B. Nguyen; S. Sevugarajan; Kevin T. Seale; John P. Wikswo; John A. McLean

The combination of microfluidic cell trapping devices with ion mobility-mass spectrometry offers the potential for elucidating in real time the dynamic responses of small populations of cells to paracrine signals, changes in metabolite levels and delivery of drugs and toxins. Preliminary experiments examining peptides in methanol and recording the interactions of yeast and Jurkat cells with their superfusate have identified instrumental set-up and control parameters and online desalting procedures. Numerous initial experiments demonstrate and validate this new instrumental platform. Future outlooks and potential applications are addressed, specifically how this instrumentation may be used for fully automated systems biology studies of the significantly interdependent, dynamic internal workings of cellular metabolic and signalling pathways.


Lab on a Chip | 2010

A metering rotary nanopump for microfluidic systems

Scott G. Darby; Matthew Moore; Troy A. Friedlander; David K. Schaffer; Ron S. Reiserer; John P. Wikswo; Kevin T. Seale

We describe the design, fabrication, and testing of a microfabricated metering rotary nanopump for the purpose of driving fluid flow in microfluidic devices. The miniature peristaltic pump is composed of a set of microfluidic channels wrapped in a helix around a central camshaft in which a non-cylindrical cam rotates. The cam compresses the helical channels to induce peristaltic flow as it is rotated. The polydimethylsiloxane (PDMS) nanopump design is able to produce intermittent delivery or removal of several nanolitres of fluid per revolution as well as consistent continuous flow rates ranging from as low as 15 nL min(-1) to above 1.0 µL min(-1). At back pressures encountered in typical microfluidic devices, the pump acts as a high impedance flow source. The durability, biocompatibility, ease of integration with soft-lithographic fabrication, the use of a simple rotary motor instead of multiple synchronized pneumatic or mechanical actuators, and the absence of power consumption or fluidic conductance in the resting state all contribute to a compact pump with a low cost of fabrication and versatile implementation. This suggests that the pump design may be useful for a wide variety of biological experiments and point of care devices.


Journal of Microscopy | 2008

Mirrored pyramidal wells for simultaneous multiple vantage point microscopy.

Kevin T. Seale; Ronald S. Reiserer; Dmitry A. Markov; I.A. Ges; Charles T. Wright; Chris Janetopoulos; John P. Wikswo

We report a novel method for obtaining simultaneous images from multiple vantage points of a microscopic specimen using size‐matched microscopic mirrors created from anisotropically etched silicon. The resulting pyramidal wells enable bright‐field and fluorescent side‐view images, and when combined with z‐sectioning, provide additional information for 3D reconstructions of the specimen. We have demonstrated the 3D localization and tracking over time of the centrosome of a live Dictyostelium discoideum. The simultaneous acquisition of images from multiple perspectives also provides a five‐fold increase in the theoretical collection efficiency of emitted photons, a property which may be useful for low‐light imaging modalities such as bioluminescence, or low abundance surface‐marker labelling.


Scientific Reports | 2015

The microfluidic multitrap nanophysiometer for hematologic cancer cell characterization reveals temporal sensitivity of the calcein-AM efflux assay

Thomas F. Byrd; Loi T. Hoang; Eric Kim; Matthew E. Pfister; Erik M. Werner; Stephen E. Arndt; Jeffrey W. Chamberlain; Jacob J. Hughey; Bao A. Nguyen; Erik J. Schneibel; Laura L. Wertz; Jonathan S. Whitfield; John P. Wikswo; Kevin T. Seale

Cytometric studies utilizing flow cytometry or multi-well culture plate fluorometry are often limited by a deficit in temporal resolution and a lack of single cell consideration. Unfortunately, many cellular processes, including signaling, motility, and molecular transport, occur transiently over relatively short periods of time and at different magnitudes between cells. Here we demonstrate the multitrap nanophysiometer (MTNP), a low-volume microfluidic platform housing an array of cell traps, as an effective tool that can be used to study individual unattached cells over time with precise control over the intercellular microenvironment. We show how the MTNP platform can be used for hematologic cancer cell characterization by measuring single T cell levels of CRAC channel modulation, non-translational motility, and ABC-transporter inhibition via a calcein-AM efflux assay. The transporter data indicate that Jurkat T cells exposed to indomethacin continue to accumulate fluorescent calcein for over 60 minutes after calcein-AM is removed from the extracellular space.


PLOS ONE | 2015

Real-Time Cellular Exometabolome Analysis with a Microfluidic-Mass Spectrometry Platform

Christina C. Marasco; Jeffrey R. Enders; Kevin T. Seale; John A. McLean; John P. Wikswo

To address the challenges of tracking the multitude of signaling molecules and metabolites that is the basis of biological complexity, we describe a strategy to expand the analytical techniques for dynamic systems biology. Using microfluidics, online desalting, and mass spectrometry technologies, we constructed and validated a platform well suited for sampling the cellular microenvironment with high temporal resolution. Our platform achieves success in: automated cellular stimulation and microenvironment control; reduced non-specific adsorption to polydimethylsiloxane due to surface passivation; real-time online sample collection; near real-time sample preparation for salt removal; and real-time online mass spectrometry. When compared against the benchmark of “in-culture” experiments combined with ultraperformance liquid chromatography-electrospray ionization-ion mobility-mass spectrometry (UPLC-ESI-IM-MS), our platform alleviates the volume challenge issues caused by dilution of autocrine and paracrine signaling and dramatically reduces sample preparation and data collection time, while reducing undesirable external influence from various manual methods of manipulating cells and media (e.g., cell centrifugation). To validate this system biologically, we focused on cellular responses of Jurkat T cells to microenvironmental stimuli. Application of these stimuli, in conjunction with the cell’s metabolic processes, results in changes in consumption of nutrients and secretion of biomolecules (collectively, the exometabolome), which enable communication with other cells or tissues and elimination of waste. Naïve and experienced T-cell metabolism of cocaine is used as an exemplary system to confirm the platform’s capability, highlight its potential for metabolite discovery applications, and explore immunological memory of T-cell drug exposure. Our platform proved capable of detecting metabolomic variations between naïve and experienced Jurkat T cells and highlights the dynamics of the exometabolome over time. Upregulation of the cocaine metabolite, benzoylecgonine, was noted in experienced T cells, indicating potential cellular memory of cocaine exposure. These metabolomics distinctions were absent from the analogous, traditional “in-culture” UPLC-ESI-IM-MS experiment, further demonstrating this platform’s capabilities.

Collaboration


Dive into the Kevin T. Seale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge