Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin V. Thomas is active.

Publication


Featured researches published by Kevin V. Thomas.


Journal of Chromatography A | 2003

Determination of selected human pharmaceutical compounds in effluent and surface water samples by high-performance liquid chromatography-electrospray tandem mass spectrometry.

Martin J. Hilton; Kevin V. Thomas

A simple method is presented for the analysis of 13 pharmaceutical and pharmaceutical metabolite compounds in sewage effluents and surface waters. The pharmaceutical compounds were extracted using a genetic solid-phase extraction (SPE) procedure using Phenomenex Strata X as a stationary phase. Extracts were quantitatively analysed by four separate reversed-phase high-performance liquid chromatography-electrospray tandem mass spectrometry (HPLC-ESI-MS/MS) techniques and quantified by comparison with an internal standard ([13C]-phenacetin). Recoveries and limits of detection (LOD) for sulfamethoxazole (120%, 50 ng l(-1)), acetyl-sulfamethoxazole (56%, 50 ng l(-1)), trimethoprim (123%, 10 ng l(-1)), erythromycin (73%, 10 ng l(-1)), paracetamol (75%, 50 ng l(-1)), ibuprofen (117%, 20 ng l(-1)), clofibric acid (83%, 50 ng l(-1)), mefenamic acid (24%, 50 ng l(-1)), diclofenac (62%, 20 ng l(-1)), propranolol (45%, 10 ng l(-1)), dextropropoxyphene (63%, 20 ng l(-1)) and tamoxifen (42%, 10 ng l(-1)) were all acceptable. The recovery of lofepramine (4%) was too low to be of use in a monitoring programme. Application of the method to samples collected from UK sewage effluents and surface waters showed detectable concentrations of mefenamic acid, diclofenac, propranolol, erythromycin, trimethoprim and acetyl-sulfamethoxazole in both matrices. Ibuprofen and dextropropoxyphene were detected in sewage effluents alone. All other pharmaceutical compounds were below the methods limits of detection.


Biofouling | 2010

The environmental fate and effects of antifouling paint biocides

Kevin V. Thomas; Steven J. Brooks

Antifouling (AF) biocides are the active ingredients in AF paints that prevent the settlement, adhesion and growth of organisms to a painted surface. A wide range of chemicals are used as AF biocides, which have very different physico-chemical properties and therefore differing environmental fates, behaviour and effects. Copper has been used as an antifoulant for centuries and extensive research has been performed to understand how copper speciation influences bioavailability and toxicity. For biocides that have been widely used over a number of decades, for example Irgarol 1051 and diuron, there are a large amount of environmental data in the public domain, including for their respective metabolites, that allows their environmental safety and potential risk to the environment to be assessed. For other biocides such as dichlofluanid, DCOIT (SeaNine 211) and zinc/copper pyrithione, there is a good understanding of their fate and effects. However, few monitoring studies have been performed and not so much is known about the fate and effects of their metabolites. There are also new or candidate biocides such as triphenylborane pyridine, Econea, capsaicin and medetomidine for which there is very little information in the public domain. This review provides an overview of the environmental fate and occurrence data that are in the public domain for AF biocides and provides some insight into the effects of these compounds on non-target organisms.


Science of The Total Environment | 2012

Comparing illicit drug use in 19 European cities through sewage analysis.

Kevin V. Thomas; Lubertus Bijlsma; Sara Castiglioni; Adrian Covaci; Erik Emke; Roman Grabic; Félix Hernández; Sara Karolak; Barbara Kasprzyk-Hordern; Richard H. Lindberg; Miren López de Alda; Axel Meierjohann; Christoph Ort; Yolanda Picó; José Benito Quintana; Malcolm J. Reid; Joerg Rieckermann; Senka Terzić; Alexander L.N. van Nuijs; Pim de Voogt

The analysis of sewage for urinary biomarkers of illicit drugs is a promising and complementary approach for estimating the use of these substances in the general population. For the first time, this approach was simultaneously applied in 19 European cities, making it possible to directly compare illicit drug loads in Europe over a 1-week period. An inter-laboratory comparison study was performed to evaluate the analytical performance of the participating laboratories. Raw 24-hour composite sewage samples were collected from 19 European cities during a single week in March 2011 and analyzed for the urinary biomarkers of cocaine, amphetamine, ecstasy, methamphetamine and cannabis using in-house optimized and validated analytical methods. The load of each substance used in each city was back-calculated from the measured concentrations. The data show distinct temporal and spatial patterns in drug use across Europe. Cocaine use was higher in Western and Central Europe and lower in Northern and Eastern Europe. The extrapolated total daily use of cocaine in Europe during the study period was equivalent to 356 kg/day. High per capita ecstasy loads were observed in Dutch cities, as well as in Antwerp and London. In general, cocaine and ecstasy loads were significantly elevated during the weekend compared to weekdays. Per-capita loads of methamphetamine were highest in Helsinki and Turku, Oslo and Budweis, while the per capita loads of cannabis were similar throughout Europe. This study shows that a standardized analysis for illicit drug urinary biomarkers in sewage can be applied to estimate and compare the use of these substances at local and international scales. This approach has the potential to deliver important information on drug markets (supply indicator).


Marine Pollution Bulletin | 2001

Antifouling paint booster biocides in the UK coastal environment and potential risks of biological effects.

Kevin V. Thomas; T.W. Fileman; James W. Readman; Mike Waldock

In the yachting sector of the UK antifouling market, organic biocides are commonly added to antifouling preparations to boost performance. Few data presently exist for concentrations of these compounds in UK waters. In this study the concentrations of tributyltin (TBT) and eight booster biocides were measured before and during the 1998 yachting season. The Crouch Estuary, Essex, Sutton Harbour, Plymouth and Southampton Water were chosen as representative study sites for comparison with previous surveys of TBT concentrations. Diuron and Irgarol 1051 were the only organic booster biocides found at concentrations above the limits of detection. Diuron was measured at the highest concentrations, whilst detectable concentrations of both Irgarol 1051 and diuron were determined in areas of high yachting activity (e.g. mooring areas and marinas). Maximum measured values were 1,421 and 6,740 ng/l, respectively. Lower concentrations of both compounds were found in open estuarine areas, although non-antifouling contributions of diuron may contribute to the overall inputs to estuarine systems. TBT was found to be below or near the environmental quality standard (EQS) of 2 ng/l for all samples collected from estuarine areas frequented by pleasure craft alone, but with much higher concentrations measured in some marinas, harbours and in areas frequented by large commercial vessels. Using the limited published environmental fate and toxicity data available for antifouling booster biocides, a comparative assessment to evaluate the risk posed by these compounds to the aquatic environment is described. TBT still exceeds risk quotients by the greatest margins, but widespread effects due to Irgarol 1051 and less so diuron cannot be ruled out (particularly if use patterns change) and more information is required to provide a robust risk assessment.


Science of The Total Environment | 2002

Antifouling paint booster biocides in UK coastal waters: inputs, occurrence and environmental fate

Kevin V. Thomas; Mathew McHugh; Mike Waldock

This study considered the inputs of antifouling paint booster biocides into the aquatic environment directly from painted hulls and high pressure hosing operations, the occurrence of booster biocides in marinas, harbours and docks, and the influence of degradation and water-sediment partition on their environmental fate. Irgarol 1051, the Irgarol 1051 degradation product GS26575, diuron, and the diuron degradation products 1-(3-chlorophenyl)-3,1-dimethylurea (CPDU), 1-(3,4-dichlorophenyl)-3-methylurea (DCPMU) and 1-(3,4-dichlorophenyl)urea (DCPU) were all detected at measurable concentrations in surface waters. Irgarol 1051, GS26575 and diuron were also detected in bottom sediments. A preliminary study of biocide input during both normal use and foreshore hull hosing showed that hosing may be a significant point source input and also be a cause for future concern since much of this input is in the form of paint particles. Field based measurements and laboratory experiments showed that Irgarol 1051 and diuron persist in the water column, due to a low affinity to partition onto sedimentary material and high resistance to degradation. Other biocides such as chlorothalonil, dichlofluanid, and Sea-Nine 211 were all found to be rapidly removed from the water column and be less persistent.


Environment International | 2011

Characterization of the effluent from a nanosilver producing washing machine

Julia Farkas; Hannes Peter; Paul Christian; Julián Alberto Gallego Urrea; Martin Hassellöv; Jani Tuoriniemi; Stefan Gustafsson; Eva Olsson; Ketil Hylland; Kevin V. Thomas

The increasing number of nanomaterial based consumer products raises concerns about their possible impact on the environment. This study provides an assessment of the effluent from a commercially available silver nanowashing machine. The washing machine released silver in its effluent at an average concentration of 11μgL(-1), as determined by inductive coupled mass spectrometry (ICP-MS). The presence of silver nanoparticles (AgNPs) was confirmed by single particle ICP-MS as well as ion selective electrode measurements and filtration techniques. Size measurements showed particles to be in the defined nanosize range, with an average size of 10nm measured with transmission electron microscopy (TEM) and 60-100nm determined with nanoparticle tracking analysis (NTA). The effluent was shown to have negative effects on a natural bacterial community as its abundance was clearly reduced when exposed to the nanowash water. If washing machines capable of producing AgNPs become a common feature of households in the future, wastewater will contain significant loadings of AgNPs which might be released into the environment.


Environment International | 2009

Determination of pharmaceutical compounds in hospital effluents and their contribution to wastewater treatment works.

Katherine Langford; Kevin V. Thomas

A method was developed for the simultaneous determination of almost 40 pharmaceuticals; including antidepressants, non-steroidal anti-inflammatories, analgesics, hypolipidemics, alpha- and beta-blockers, an anti cancer drug, anti-fungal agents, an opiate, an antibiotic, an anti-coagulant, a diuretic, an anti-anginal and an anti-diabetic compound. This was used to assess the contribution of pharmaceuticals originating from hospital effluents to one of Oslo citys wastewater treatment works. Some pharmaceuticals were found to contribute to more of the wastewater loading than others. 11% of the propranolol entering the wastewater treatment works stems from hospital effluent, approximately 2% of the atenolol, carbemazepine, metaprolol and atorvastatin, and for several other compounds the contribution is less than 1%. This assessment shows that point sources discharges from hospitals typically make a small contribution to the overall pharmaceutical load when compared to municipal areas, however this varies from substance to substance and is not the case when a drugs use is primarily hospital based.


Marine Pollution Bulletin | 2000

Antifouling Paint Booster Biocide Contamination in UK Marine Sediments

Kevin V. Thomas; S.J Blake; Michael J. Waldock

The proposed International Maritime Organization (IMO) ban on tributyltin (TBT) as an antifouling paint biocide, will raise the inevitability of the increased use of alternative paints containing copper and organic booster biocides. Although the fate of TBT in marine sediments has been extensively studied, very little work has been performed to assess the accumulation of organic booster biocides in sediments. A survey was conducted to determine concentrations of TBT, Irgarol 1051, the Irgarol 1051 metabolite GS26575 (2-(tert-butylamino)-4-amino-6-(methylthio)-1,3,5-triazine; also referred to as M1) and diuron in coastal and off-shore sediments. TBT was consistently determined at the highest concentrations and was detected in all sediments collected from Southampton Water, UK, along with the TBT degradation product dibutyltin (DBT). Irgarol 1051 was detected (0.01-0.11 μg/g) in some sediments collected from marinas, where high concentrations of these compounds have been measured in surface waters. The Irgarol 1051 metabolite 2-methylthio-4-tert-butylamino-6-amino-s-triazine (M1/GS26575) was only detected at a few locations at concentrations <0.001 μg/g, although higher concentrations were determined in surface waters (13-99 ng ng l). Diuron, thought to be present in the form of antifouling paint particles, was determined at a concentration of 1.4 μg/g in an enclosed marina. All analytes were found to be below the limit of detection in the sediments collected off-shore. The potential accumulation in sediments of the other two booster biocides currently used in the UK, zinc pyrithione and dichlofluanid, are also discussed


Addiction | 2014

Spatial differences and temporal changes in illicit drug use in Europe quantified by wastewater analysis

Christoph Ort; Alexander L.N. van Nuijs; Jean-Daniel Berset; Lubertus Bijlsma; Sara Castiglioni; Adrian Covaci; Pim de Voogt; Erik Emke; Despo Fatta-Kassinos; Paul Griffiths; Félix Hernández; Iria González-Mariño; Roman Grabic; Barbara Kasprzyk-Hordern; Nicola Mastroianni; Axel Meierjohann; Thomas Nefau; Marcus Östman; Yolanda Picó; Inés Racamonde; Malcolm J. Reid; Jaroslav Slobodnik; Senka Terzić; Nikolaos S. Thomaidis; Kevin V. Thomas

Aims To perform wastewater analyses to assess spatial differences and temporal changes of illicit drug use in a large European population. Design Analyses of raw wastewater over a 1-week period in 2012 and 2013. Setting and Participants Catchment areas of wastewater treatment plants (WWTPs) across Europe, as follows: 2012: 25 WWTPs in 11 countries (23 cities, total population 11.50 million); 2013: 47 WWTPs in 21 countries (42 cities, total population 24.74 million). Measurements Excretion products of five illicit drugs (cocaine, amphetamine, ecstasy, methamphetamine, cannabis) were quantified in wastewater samples using methods based on liquid chromatography coupled to mass spectrometry. Findings Spatial differences were assessed and confirmed to vary greatly across European metropolitan areas. In general, results were in agreement with traditional surveillance data, where available. While temporal changes were substantial in individual cities and years (P ranging from insignificant to <10−3), overall means were relatively stable. The overall mean of methamphetamine was an exception (apparent decline in 2012), as it was influenced mainly by four cities. Conclusions Wastewater analysis performed across Europe provides complementary evidence on illicit drug consumption and generally concurs with traditional surveillance data. Wastewater analysis can measure total illicit drug use more quickly and regularly than is the current norm for national surveys, and creates estimates where such data does not exist.


Environmental Science & Technology | 2013

Evaluation of Uncertainties Associated with the Determination of Community Drug Use through the Measurement of Sewage Drug Biomarkers

Sara Castiglioni; Lubertus Bijlsma; Adrian Covaci; Erik Emke; Félix Hernández; Malcolm J. Reid; Christoph Ort; Kevin V. Thomas; Alexander L.N. van Nuijs; Pim de Voogt; Ettore Zuccato

The aim of this study was to integrally address the uncertainty associated with all the steps used to estimate community drug consumption through the chemical analysis of sewage biomarkers of illicit drugs. Uncertainty has been evaluated for sampling, chemical analysis, stability of drug biomarkers in sewage, back-calculation of drug use (specific case of cocaine), and estimation of population size in a catchment using data collected from a recent Europe-wide investigation and from the available literature. The quality of sampling protocols and analytical measurements has been evaluated by analyzing standardized questionnaires collected from 19 sewage treatments plants (STPs) and the results of an interlaboratory study (ILS), respectively. Extensive reviews of the available literature have been used to evaluate stability of drug biomarkers in sewage and the uncertainty related to back-calculation of cocaine use. Different methods for estimating population size in a catchment have been compared and the variability among the collected data was very high (7-55%). A reasonable strategy to reduce uncertainty was therefore to choose the most reliable estimation case by case. In the other cases, the highest uncertainties are related to the analysis of sewage drug biomarkers (uncertainty as relative standard deviation; RSD: 6-26% from ILS) and to the back-calculation of cocaine use (uncertainty; RSD: 26%). Uncertainty can be kept below 10% in the remaining steps, if specific requirements outlined in this work are considered. For each step, a best practice protocol has been suggested and discussed to reduce and keep to a minimum the uncertainty of the entire procedure and to improve the reliability of the estimates of drug use.

Collaboration


Dive into the Kevin V. Thomas's collaboration.

Top Co-Authors

Avatar

Malcolm J. Reid

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Katherine Langford

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara Castiglioni

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Christoph Ort

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jose Antonio Baz-Lomba

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Pim de Voogt

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Knut Erik Tollefsen

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Jake O'Brien

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge