Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keyan Zhao is active.

Publication


Featured researches published by Keyan Zhao.


Nature Communications | 2011

Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa

Keyan Zhao; Chih-Wei Tung; Georgia C. Eizenga; Mark H. Wright; M. Liakat Ali; Adam H. Price; Gareth J. Norton; S. M. Rafiqul Islam; Andrew R. Reynolds; Jason G. Mezey; Anna M. McClung; Carlos Bustamante; Susan R. McCouch

Asian rice, Oryza sativa is a cultivated, inbreeding species that feeds over half of the worlds population. Understanding the genetic basis of diverse physiological, developmental, and morphological traits provides the basis for improving yield, quality and sustainability of rice. Here we show the results of a genome-wide association study based on genotyping 44,100 SNP variants across 413 diverse accessions of O. sativa collected from 82 countries that were systematically phenotyped for 34 traits. Using cross-population-based mapping strategies, we identified dozens of common variants influencing numerous complex traits. Significant heterogeneity was observed in the genetic architecture associated with subpopulation structure and response to environment. This work establishes an open-source translational research platform for genome-wide association studies in rice that directly links molecular variation in genes and metabolic pathways with the germplasm resources needed to accelerate varietal development and crop improvement.


PLOS Genetics | 2005

An Arabidopsis Example of Association Mapping in Structured Samples

Keyan Zhao; Maria Jose Aranzana; Sung Kim; Clare Lister; Chikako Shindo; Chunlao Tang; Christopher Toomajian; Honggang Zheng; Caroline Dean; Paul Marjoram; Magnus Nordborg

A potentially serious disadvantage of association mapping is the fact that marker-trait associations may arise from confounding population structure as well as from linkage to causative polymorphisms. Using genome-wide marker data, we have previously demonstrated that the problem can be severe in a global sample of 95 Arabidopsis thaliana accessions, and that established methods for controlling for population structure are generally insufficient. Here, we use the same sample together with a number of flowering-related phenotypes and data-perturbation simulations to evaluate a wider range of methods for controlling for population structure. We find that, in terms of reducing the false-positive rate while maintaining statistical power, a recently introduced mixed-model approach that takes genome-wide differences in relatedness into account via estimated pairwise kinship coefficients generally performs best. By combining the association results with results from linkage mapping in F2 crosses, we identify one previously known true positive and several promising new associations, but also demonstrate the existence of both false positives and false negatives. Our results illustrate the potential of genome-wide association scans as a tool for dissecting the genetics of natural variation, while at the same time highlighting the pitfalls. The importance of study design is clear; our study is severely under-powered both in terms of sample size and marker density. Our results also provide a striking demonstration of confounding by population structure. While statistical methods can be used to ameliorate this problem, they cannot always be effective and are certainly not a substitute for independent evidence, such as that obtained via crosses or transgenic experiments. Ultimately, association mapping is a powerful tool for identifying a list of candidates that is short enough to permit further genetic study.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Genomewide SNP variation reveals relationships among landraces and modern varieties of rice.

Kenneth L. McNally; Kevin L. Childs; Regina Bohnert; Rebecca M. Davidson; Keyan Zhao; Victor Jun Ulat; Georg Zeller; Richard M. Clark; Douglas R. Hoen; Thomas E. Bureau; Renee Stokowski; Dennis G. Ballinger; Kelly A. Frazer; D. R. Cox; Badri Padhukasahasram; Carlos Bustamante; Detlef Weigel; David J. Mackill; Richard Bruskiewich; Gunnar Rätsch; C. Robin Buell; Hei Leung; Jan E. Leach

Rice, the primary source of dietary calories for half of humanity, is the first crop plant for which a high-quality reference genome sequence from a single variety was produced. We used resequencing microarrays to interrogate 100 Mb of the unique fraction of the reference genome for 20 diverse varieties and landraces that capture the impressive genotypic and phenotypic diversity of domesticated rice. Here, we report the distribution of 160,000 nonredundant SNPs. Introgression patterns of shared SNPs revealed the breeding history and relationships among the 20 varieties; some introgressed regions are associated with agronomic traits that mark major milestones in rice improvement. These comprehensive SNP data provide a foundation for deep exploration of rice diversity and gene–trait relationships and their use for future rice improvement.


PLOS Genetics | 2005

Genome-Wide Association Mapping in Arabidopsis Identifies Previously Known Flowering Time and Pathogen Resistance Genes

Maria Jose Aranzana; Sung Kim; Keyan Zhao; Erica G. Bakker; Matthew Horton; Katrin Jakob; Clare Lister; John Molitor; Chikako Shindo; Chunlao Tang; Christopher Toomajian; Brian Traw; Honggang Zheng; Joy Bergelson; Caroline Dean; Paul Marjoram; Magnus Nordborg

There is currently tremendous interest in the possibility of using genome-wide association mapping to identify genes responsible for natural variation, particularly for human disease susceptibility. The model plant Arabidopsis thaliana is in many ways an ideal candidate for such studies, because it is a highly selfing hermaphrodite. As a result, the species largely exists as a collection of naturally occurring inbred lines, or accessions, which can be genotyped once and phenotyped repeatedly. Furthermore, linkage disequilibrium in such a species will be much more extensive than in a comparable outcrossing species. We tested the feasibility of genome-wide association mapping in A. thaliana by searching for associations with flowering time and pathogen resistance in a sample of 95 accessions for which genome-wide polymorphism data were available. In spite of an extremely high rate of false positives due to population structure, we were able to identify known major genes for all phenotypes tested, thus demonstrating the potential of genome-wide association mapping in A. thaliana and other species with similar patterns of variation. The rate of false positives differed strongly between traits, with more clinal traits showing the highest rate. However, the false positive rates were always substantial regardless of the trait, highlighting the necessity of an appropriate genomic control in association studies.


PLOS Biology | 2010

A Simple Genetic Architecture Underlies Morphological Variation in Dogs

Adam R. Boyko; Pascale Quignon; Lin Li; Jeffrey J. Schoenebeck; Jeremiah D. Degenhardt; Kirk E. Lohmueller; Keyan Zhao; Abra Brisbin; Heidi G. Parker; Bridgett M. vonHoldt; Michele Cargill; Adam Auton; Andrew R. Reynolds; Abdel G. Elkahloun; Marta Castelhano; Dana S. Mosher; Nathan B. Sutter; Gary S. Johnson; John Novembre; Melissa J. Hubisz; Adam Siepel; Robert K. Wayne; Carlos Bustamante; Elaine A. Ostrander

The largest genetic study to date of morphology in domestic dogs identifies genes controlling nearly 100 morphological traits and identifies important trends in phenotypic variation within this species.


PLOS Genetics | 2011

Genetic Architecture of Aluminum Tolerance in Rice (Oryza sativa) Determined through Genome-Wide Association Analysis and QTL Mapping

Adam N. Famoso; Keyan Zhao; Randy T. Clark; Chih-Wei Tung; Mark H. Wright; Carlos Bustamante; Leon V. Kochian; Susan R. McCouch

Aluminum (Al) toxicity is a primary limitation to crop productivity on acid soils, and rice has been demonstrated to be significantly more Al tolerant than other cereal crops. However, the mechanisms of rice Al tolerance are largely unknown, and no genes underlying natural variation have been reported. We screened 383 diverse rice accessions, conducted a genome-wide association (GWA) study, and conducted QTL mapping in two bi-parental populations using three estimates of Al tolerance based on root growth. Subpopulation structure explained 57% of the phenotypic variation, and the mean Al tolerance in Japonica was twice that of Indica. Forty-eight regions associated with Al tolerance were identified by GWA analysis, most of which were subpopulation-specific. Four of these regions co-localized with a priori candidate genes, and two highly significant regions co-localized with previously identified QTLs. Three regions corresponding to induced Al-sensitive rice mutants (ART1, STAR2, Nrat1) were identified through bi-parental QTL mapping or GWA to be involved in natural variation for Al tolerance. Haplotype analysis around the Nrat1 gene identified susceptible and tolerant haplotypes explaining 40% of the Al tolerance variation within the aus subpopulation, and sequence analysis of Nrat1 identified a trio of non-synonymous mutations predictive of Al sensitivity in our diversity panel. GWA analysis discovered more phenotype–genotype associations and provided higher resolution, but QTL mapping identified critical rare and/or subpopulation-specific alleles not detected by GWA analysis. Mapping using Indica/Japonica populations identified QTLs associated with transgressive variation where alleles from a susceptible aus or indica parent enhanced Al tolerance in a tolerant Japonica background. This work supports the hypothesis that selectively introgressing alleles across subpopulations is an efficient approach for trait enhancement in plant breeding programs and demonstrates the fundamental importance of subpopulation in interpreting and manipulating the genetics of complex traits in rice.


PLOS ONE | 2010

Genomic Diversity and Introgression in O. sativa Reveal the Impact of Domestication and Breeding on the Rice Genome

Keyan Zhao; Mark G. Wright; Jennifer A. Kimball; Georgia C. Eizenga; Anna M. McClung; Michael J. Kovach; Wricha Tyagi; Md. Liakat Ali; Chih-Wei Tung; Andrew R. Reynolds; Carlos Bustamante; Susan R. McCouch

Background The domestication of Asian rice (Oryza sativa) was a complex process punctuated by episodes of introgressive hybridization among and between subpopulations. Deep genetic divergence between the two main varietal groups (Indica and Japonica) suggests domestication from at least two distinct wild populations. However, genetic uniformity surrounding key domestication genes across divergent subpopulations suggests cultural exchange of genetic material among ancient farmers. Methodology/Principal Findings In this study, we utilize a novel 1,536 SNP panel genotyped across 395 diverse accessions of O. sativa to study genome-wide patterns of polymorphism, to characterize population structure, and to infer the introgression history of domesticated Asian rice. Our population structure analyses support the existence of five major subpopulations (indica, aus, tropical japonica, temperate japonica and GroupV) consistent with previous analyses. Our introgression analysis shows that most accessions exhibit some degree of admixture, with many individuals within a population sharing the same introgressed segment due to artificial selection. Admixture mapping and association analysis of amylose content and grain length illustrate the potential for dissecting the genetic basis of complex traits in domesticated plant populations. Conclusions/Significance Genes in these regions control a myriad of traits including plant stature, blast resistance, and amylose content. These analyses highlight the power of population genomics in agricultural systems to identify functionally important regions of the genome and to decipher the role of human-directed breeding in refashioning the genomes of a domesticated species.


PLOS Genetics | 2005

Variation in Molybdenum Content Across Broadly Distributed Populations of Arabidopsis thaliana Is Controlled by a Mitochondrial Molybdenum Transporter (MOT1)

Ivan Baxter; Balasubramaniam Muthukumar; Hyeong Cheol Park; Peter Buchner; Brett Lahner; John Danku; Keyan Zhao; Joohyun Lee; Malcolm J. Hawkesford; Mary Lou Guerinot; David E. Salt

Molybdenum (Mo) is an essential micronutrient for plants, serving as a cofactor for enzymes involved in nitrate assimilation, sulfite detoxification, abscisic acid biosynthesis, and purine degradation. Here we show that natural variation in shoot Mo content across 92 Arabidopsis thaliana accessions is controlled by variation in a mitochondrially localized transporter (Molybdenum Transporter 1 - MOT1) that belongs to the sulfate transporter superfamily. A deletion in the MOT1 promoter is strongly associated with low shoot Mo, occurring in seven of the accessions with the lowest shoot content of Mo. Consistent with the low Mo phenotype, MOT1 expression in low Mo accessions is reduced. Reciprocal grafting experiments demonstrate that the roots of Ler-0 are responsible for the low Mo accumulation in shoot, and GUS localization demonstrates that MOT1 is expressed strongly in the roots. MOT1 contains an N-terminal mitochondrial targeting sequence and expression of MOT1 tagged with GFP in protoplasts and transgenic plants, establishing the mitochondrial localization of this protein. Furthermore, expression of MOT1 specifically enhances Mo accumulation in yeast by 5-fold, consistent with MOT1 functioning as a molybdate transporter. This work provides the first molecular insight into the processes that regulate Mo accumulation in plants and shows that novel loci can be detected by association mapping.


PLOS Biology | 2006

A Nonparametric Test Reveals Selection for Rapid Flowering in the Arabidopsis Genome

Christopher Toomajian; Tina T. Hu; Maria Jose Aranzana; Clare Lister; Chunlao Tang; Honggang Zheng; Keyan Zhao; Peter Calabrese; Caroline Dean; Magnus Nordborg

The detection of footprints of natural selection in genetic polymorphism data is fundamental to understanding the genetic basis of adaptation, and has important implications for human health. The standard approach has been to reject neutrality in favor of selection if the pattern of variation at a candidate locus was significantly different from the predictions of the standard neutral model. The problem is that the standard neutral model assumes more than just neutrality, and it is almost always possible to explain the data using an alternative neutral model with more complex demography. Todays wealth of genomic polymorphism data, however, makes it possible to dispense with models altogether by simply comparing the pattern observed at a candidate locus to the genomic pattern, and rejecting neutrality if the pattern is extreme. Here, we utilize this approach on a truly genomic scale, comparing a candidate locus to thousands of alleles throughout the Arabidopsis thaliana genome. We demonstrate that selection has acted to increase the frequency of early-flowering alleles at the vernalization requirement locus FRIGIDA. Selection seems to have occurred during the last several thousand years, possibly in response to the spread of agriculture. We introduce a novel test statistic based on haplotype sharing that embraces the problem of population structure, and so should be widely applicable.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Genome-wide survey of Arabidopsis natural variation in downy mildew resistance using combined association and linkage mapping.

Adnane Nemri; Susanna Atwell; Aaron M. Tarone; Yu S. Huang; Keyan Zhao; David J. Studholme; Magnus Nordborg; Jonathan D. G. Jones

The model plant Arabidopsis thaliana exhibits extensive natural variation in resistance to parasites. Immunity is often conferred by resistance (R) genes that permit recognition of specific races of a disease. The number of such R genes and their distribution are poorly understood. In this study, we investigated the basis for resistance to the downy mildew agent Hyaloperonospora arabidopsidis ex parasitica (Hpa) in a global sample of A. thaliana. We implemented a combined genome-wide mapping of resistance using populations of recombinant inbred lines and a collection of wild A. thaliana accessions. We tested the interaction between 96 host genotypes collected worldwide and five strains of Hpa. Then, a fraction of the species-wide resistance was genetically dissected using six recently constructed populations of recombinant inbred lines. We found that resistance is usually governed by single dominant R genes that are concentrated in four genomic regions only. We show that association genetics of resistance to diseases such as downy mildew enables increased mapping resolution from quantitative trait loci interval to candidate gene level. Association patterns in quantitative trait loci intervals indicate that the pool of A. thaliana resistance sources against the tested Hpa isolates may be predominantly confined to six RPP (Resistance to Hpa) loci isolated in previous studies. Our results suggest that combining association and linkage mapping could accelerate resistance gene discovery in plants.

Collaboration


Dive into the Keyan Zhao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Magnus Nordborg

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Marjoram

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Andrew R. Reynolds

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Honggang Zheng

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Anna M. McClung

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher Toomajian

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge