Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher Toomajian is active.

Publication


Featured researches published by Christopher Toomajian.


PLOS Genetics | 2005

An Arabidopsis Example of Association Mapping in Structured Samples

Keyan Zhao; Maria Jose Aranzana; Sung Kim; Clare Lister; Chikako Shindo; Chunlao Tang; Christopher Toomajian; Honggang Zheng; Caroline Dean; Paul Marjoram; Magnus Nordborg

A potentially serious disadvantage of association mapping is the fact that marker-trait associations may arise from confounding population structure as well as from linkage to causative polymorphisms. Using genome-wide marker data, we have previously demonstrated that the problem can be severe in a global sample of 95 Arabidopsis thaliana accessions, and that established methods for controlling for population structure are generally insufficient. Here, we use the same sample together with a number of flowering-related phenotypes and data-perturbation simulations to evaluate a wider range of methods for controlling for population structure. We find that, in terms of reducing the false-positive rate while maintaining statistical power, a recently introduced mixed-model approach that takes genome-wide differences in relatedness into account via estimated pairwise kinship coefficients generally performs best. By combining the association results with results from linkage mapping in F2 crosses, we identify one previously known true positive and several promising new associations, but also demonstrate the existence of both false positives and false negatives. Our results illustrate the potential of genome-wide association scans as a tool for dissecting the genetics of natural variation, while at the same time highlighting the pitfalls. The importance of study design is clear; our study is severely under-powered both in terms of sample size and marker density. Our results also provide a striking demonstration of confounding by population structure. While statistical methods can be used to ameliorate this problem, they cannot always be effective and are certainly not a substitute for independent evidence, such as that obtained via crosses or transgenic experiments. Ultimately, association mapping is a powerful tool for identifying a list of candidates that is short enough to permit further genetic study.


Nature | 2011

Multiple reference genomes and transcriptomes for Arabidopsis thaliana

Xiangchao Gan; Oliver Stegle; Jonas Behr; Joshua G. Steffen; Philipp Drewe; Katie L. Hildebrand; Rune Lyngsoe; Sebastian J. Schultheiss; Edward J. Osborne; Vipin T. Sreedharan; André Kahles; Regina Bohnert; Géraldine Jean; Paul S. Derwent; Paul J. Kersey; Eric J. Belfield; Nicholas P. Harberd; Eric Kemen; Christopher Toomajian; Paula X. Kover; Richard M. Clark; Gunnar Rätsch; Richard Mott

Genetic differences between Arabidopsis thaliana accessions underlie the plant’s extensive phenotypic variation, and until now these have been interpreted largely in the context of the annotated reference accession Col-0. Here we report the sequencing, assembly and annotation of the genomes of 18 natural A. thaliana accessions, and their transcriptomes. When assessed on the basis of the reference annotation, one-third of protein-coding genes are predicted to be disrupted in at least one accession. However, re-annotation of each genome revealed that alternative gene models often restore coding potential. Gene expression in seedlings differed for nearly half of expressed genes and was frequently associated with cis variants within 5 kilobases, as were intron retention alternative splicing events. Sequence and expression variation is most pronounced in genes that respond to the biotic environment. Our data further promote evolutionary and functional studies in A. thaliana, especially the MAGIC genetic reference population descended from these accessions.


PLOS Genetics | 2005

Genome-Wide Association Mapping in Arabidopsis Identifies Previously Known Flowering Time and Pathogen Resistance Genes

Maria Jose Aranzana; Sung Kim; Keyan Zhao; Erica G. Bakker; Matthew Horton; Katrin Jakob; Clare Lister; John Molitor; Chikako Shindo; Chunlao Tang; Christopher Toomajian; Brian Traw; Honggang Zheng; Joy Bergelson; Caroline Dean; Paul Marjoram; Magnus Nordborg

There is currently tremendous interest in the possibility of using genome-wide association mapping to identify genes responsible for natural variation, particularly for human disease susceptibility. The model plant Arabidopsis thaliana is in many ways an ideal candidate for such studies, because it is a highly selfing hermaphrodite. As a result, the species largely exists as a collection of naturally occurring inbred lines, or accessions, which can be genotyped once and phenotyped repeatedly. Furthermore, linkage disequilibrium in such a species will be much more extensive than in a comparable outcrossing species. We tested the feasibility of genome-wide association mapping in A. thaliana by searching for associations with flowering time and pathogen resistance in a sample of 95 accessions for which genome-wide polymorphism data were available. In spite of an extremely high rate of false positives due to population structure, we were able to identify known major genes for all phenotypes tested, thus demonstrating the potential of genome-wide association mapping in A. thaliana and other species with similar patterns of variation. The rate of false positives differed strongly between traits, with more clinal traits showing the highest rate. However, the false positive rates were always substantial regardless of the trait, highlighting the necessity of an appropriate genomic control in association studies.


Nature Genetics | 2012

Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel

Matthew Horton; Angela M. Hancock; Yu S. Huang; Christopher Toomajian; Susanna Atwell; Adam Auton; N. Wayan Muliyati; Alexander Platt; F. Gianluca Sperone; Bjarni J. Vilhjálmsson; Magnus Nordborg; Justin O. Borevitz; Joy Bergelson

Arabidopsis thaliana is native to Eurasia and is naturalized across the world. Its ability to be easily propagated and its high phenotypic variability make it an ideal model system for functional, ecological and evolutionary genetics. To date, analyses of the natural genetic variation of A. thaliana have involved small numbers of individual plants or genetic markers. Here we genotype 1,307 worldwide accessions, including several regional samples, using a 250K SNP chip. This allowed us to produce a high-resolution description of the global pattern of genetic variation. We applied three complementary selection tests and identified new targets of selection. Further, we characterized the pattern of historical recombination in A. thaliana and observed an enrichment of hotspots in its intergenic regions and repetitive DNA, which is consistent with the pattern that is observed for humans but which is strikingly different from that observed in other plant species. We have made the seeds we used to produce this Regional Mapping (RegMap) panel publicly available. This panel comprises one of the largest genomic mapping resources currently available for global natural isolates of a non-human species.


The Plant Cell | 2006

A Genome-Wide Survey of R Gene Polymorphisms in Arabidopsis

Erica G. Bakker; Christopher Toomajian; Martin Kreitman; Joy Bergelson

We used polymorphism analysis to study the evolutionary dynamics of 27 disease resistance (R) genes by resequencing the leucine-rich repeat (LRR) region in 96 Arabidopsis thaliana accessions. We compared single nucleotide polymorphisms (SNPs) in these R genes to an empirical distribution of SNP in the same sample based on 876 fragments selected to sample the entire genome. LRR regions are highly polymorphic for protein variants but not for synonymous changes, suggesting that they generate many alleles maintained for short time periods. Recombination is also relatively common and important for generating protein variants. Although none of the genes is nearly as polymorphic as RPP13, a locus previously shown to have strong signatures of balancing selection, seven genes show weaker indications of balancing selection. Five R genes are relatively invariant, indicating young alleles, but all contain segregating protein variants. Polymorphism analysis in neighboring fragments yielded inconclusive evidence for recent selective sweeps at these loci. In addition, few alleles are candidates for rapid increases in frequency expected under directional selection. Haplotype sharing analysis revealed significant underrepresentation of R gene alleles with extended haplotypes compared with 1102 random genomic fragments. Lack of convincing evidence for directional selection or selective sweeps argues against an arms race driving R gene evolution. Instead, the data support transient or frequency-dependent selection maintaining protein variants at a locus for variable time periods.


Science | 2007

The Evolution of Selfing in Arabidopsis thaliana

Chunlao Tang; Christopher Toomajian; Susan Sherman-Broyles; Vincent Plagnol; Ya-Long Guo; Tina T. Hu; Richard M. Clark; June B. Nasrallah; Detlef Weigel; Magnus Nordborg

Unlike most of its close relatives, Arabidopsis thaliana is capable of self-pollination. In other members of the mustard family, outcrossing is ensured by the complex self-incompatibility (S) locus,which harbors multiple diverged specificity haplotypes that effectively prevent selfing. We investigated the role of the S locus in the evolution of and transition to selfing in A. thaliana. We found that the S locus of A. thaliana harbored considerable diversity, which is an apparent remnant of polymorphism in the outcrossing ancestor. Thus, the fixation of a single inactivated S-locus allele cannot have been a key step in the transition to selfing. An analysis of the genome-wide pattern of linkage disequilibrium suggests that selfing most likely evolved roughly a million years ago or more.


PLOS Biology | 2006

A Nonparametric Test Reveals Selection for Rapid Flowering in the Arabidopsis Genome

Christopher Toomajian; Tina T. Hu; Maria Jose Aranzana; Clare Lister; Chunlao Tang; Honggang Zheng; Keyan Zhao; Peter Calabrese; Caroline Dean; Magnus Nordborg

The detection of footprints of natural selection in genetic polymorphism data is fundamental to understanding the genetic basis of adaptation, and has important implications for human health. The standard approach has been to reject neutrality in favor of selection if the pattern of variation at a candidate locus was significantly different from the predictions of the standard neutral model. The problem is that the standard neutral model assumes more than just neutrality, and it is almost always possible to explain the data using an alternative neutral model with more complex demography. Todays wealth of genomic polymorphism data, however, makes it possible to dispense with models altogether by simply comparing the pattern observed at a candidate locus to the genomic pattern, and rejecting neutrality if the pattern is extreme. Here, we utilize this approach on a truly genomic scale, comparing a candidate locus to thousands of alleles throughout the Arabidopsis thaliana genome. We demonstrate that selection has acted to increase the frequency of early-flowering alleles at the vernalization requirement locus FRIGIDA. Selection seems to have occurred during the last several thousand years, possibly in response to the spread of agriculture. We introduce a novel test statistic based on haplotype sharing that embraces the problem of population structure, and so should be widely applicable.


Molecular Ecology | 2006

Distribution of genetic variation within and among local populations of Arabidopsis thaliana over its species range

Erica G. Bakker; Eli A. Stahl; Christopher Toomajian; Magnus Nordborg; Martin Kreitman; Joy Bergelson

A detailed description of local population structure in Arabidopsis thaliana is presented, including an assessment of the genetic relatedness of individuals collected from the same field. A hierarchical sample of four individuals from 37 local populations, including North America, England, Eastern and Western Europe, and Asia, and a selection of ecotypes, were analysed for variation in Adh, ChiA, FAH1, F3H, Rpm1, Rps5, and five microsatellite loci. Twenty‐eight of the 37 population samples contained individuals with identical multilocus haplotypes, 12 of which were fixed for a single haplotype. These monomorphic populations were evenly distributed over the species range. Only in North America did we find a single multilocus haplotype shared among different populations, perhaps indicating a continental founder event. Despite the occurrence of local inbreeding, a considerable amount of genetic variation was found segregating within and among local populations. A novel analysis of haplotype differences reveals that genetic differentiation occurs at every geographic scale in A. thaliana, where we find a surprising under‐representation of recent migrants between local populations. This leads us to hypothesize that most dispersal between A. thaliana populations is by pollen rather than seed. Based on the structure of A. thaliana populations, it appears that regional groups of local populations may provide the most appropriate genetic material for linkage disequilibrium mapping of adaptive traits.


Genome Biology | 2015

A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes.

Katherine W. Jordan; Shichen Wang; Yanni Lun; Laura-Jayne Gardiner; Ron MacLachlan; Pierre Hucl; Krysta Wiebe; Debbie Wong; Kerrie L. Forrest; Andrew G. Sharpe; Christine Sidebottom; Neil Hall; Christopher Toomajian; Timothy J. Close; Jorge Dubcovsky; Alina Akhunova; L. E. Talbert; Urmil Bansal; Harbans Bariana; Matthew J. Hayden; Curtis J. Pozniak; Jeffrey A. Jeddeloh; Anthony Hall; Eduard Akhunov

BackgroundBread wheat is an allopolyploid species with a large, highly repetitive genome. To investigate the impact of selection on variants distributed among homoeologous wheat genomes and to build a foundation for understanding genotype-phenotype relationships, we performed population-scale re-sequencing of a diverse panel of wheat lines.ResultsA sample of 62 diverse lines was re-sequenced using the whole exome capture and genotyping-by-sequencing approaches. We describe the allele frequency, functional significance, and chromosomal distribution of 1.57 million single nucleotide polymorphisms and 161,719 small indels. Our results suggest that duplicated homoeologous genes are under purifying selection. We find contrasting patterns of variation and inter-variant associations among wheat genomes; this, in addition to demographic factors, could be explained by differences in the effect of directional selection on duplicated homoeologs. Only a small fraction of the homoeologous regions harboring selected variants overlapped among the wheat genomes in any given wheat line. These selected regions are enriched for loci associated with agronomic traits detected in genome-wide association studies.ConclusionsEvidence suggests that directional selection in allopolyploids rarely acted on multiple parallel advantageous mutations across homoeologous regions, likely indicating that a fitness benefit could be obtained by a mutation at any one of the homoeologs. Additional advantageous variants in other homoelogs probably either contributed little benefit, or were unavailable in populations subjected to directional selection. We hypothesize that allopolyploidy may have increased the likelihood of beneficial allele recovery by broadening the set of possible selection targets.


Genetics | 2008

Low Levels of Polymorphism in Genes That Control the Activation of Defense Response in Arabidopsis thaliana

Erica G. Bakker; M. Brian Traw; Christopher Toomajian; Martin Kreitman; Joy Bergelson

Plants use signaling pathways involving salicylic acid, jasmonic acid, and ethylene to defend against pathogen and herbivore attack. Many defense response genes involved in these signaling pathways have been characterized, but little is known about the selective pressures they experience. A representative set of 27 defense response genes were resequenced in a worldwide set of 96 Arabidopsis thaliana accessions, and patterns of single nucleotide polymorphisms (SNPs) were evaluated in relation to an empirical distribution of SNPs generated from either 876 fragments or 236 fragments with >400 bp coding sequence (this latter set was selected for comparisons with coding sequences) distributed across the genomes of the same set of accessions. Defense response genes have significantly fewer protein variants, display lower levels of nonsynonymous nucleotide diversity, and have fewer nonsynonymous segregating sites. The majority of defense response genes appear to be experiencing purifying selection, given the dearth of protein variation in this set of genes. Eight genes exhibit some evidence of partial selective sweeps or transient balancing selection. These results therefore provide a strong contrast to the high levels of balancing selection exhibited by genes at the upstream positions in these signaling pathways.

Collaboration


Dive into the Christopher Toomajian's collaboration.

Top Co-Authors

Avatar

Magnus Nordborg

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chunlao Tang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Honggang Zheng

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sung Kim

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Tina T. Hu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Maria Jose Aranzana

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge