Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kgomotso P. Sibeko is active.

Publication


Featured researches published by Kgomotso P. Sibeko.


Veterinary Parasitology | 2008

Development and evaluation of a real-time polymerase chain reaction test for the detection of Theileria parva infections in Cape buffalo (Syncerus caffer) and cattle.

Kgomotso P. Sibeko; Marinda C. Oosthuizen; Nicola E. Collins; Dirk Geysen; Natasha Rambritch; Abdalla A. Latif; Hennie T. Groeneveld; Frederick T. Potgieter; Jacobus A.W. Coetzer

Corridor disease, caused by the tick-borne protozoan parasite Theileria parva, is a controlled disease in South Africa. The Cape buffalo is the reservoir host and uninfected buffalo have become sought-after by the game industry in South Africa, particularly for introduction into Corridor disease-free areas. A real-time polymerase chain reaction (PCR) test for detection of T. parva DNA in buffalo and cattle was developed to improve the sensitivity and specificity of the official diagnostic test package in South Africa. Oligonucleotide primers and hybridization probes were designed based on the 18S ribosomal RNA (rRNA) gene. Amplification of control DNA using Theileria genus-specific primers resulted in detection of T. taurotragi and T. annulata, in addition to T. parva. A T. parva-specific forward primer was designed which eliminated amplification of all other Theileria species, except for Theileria sp. (buffalo); however only the T. parva product was detected by the T. parva-specific hybridization probe set. The real-time PCR assay requires less time to perform, is more sensitive than the other molecular assays previously used in T. parva diagnostics and can reliably detect the parasite in carrier animals with a piroplasm parasitaemia as low as 8.79 x 10(-4)%.


Veterinary Parasitology | 2011

Identification of Theileria parva and Theileria sp. (buffalo) 18S rRNA gene sequence variants in the African Buffalo (Syncerus caffer) in Southern Africa

Mamohale E. Chaisi; Kgomotso P. Sibeko; Nicola E. Collins; Fred T. Potgieter; Marinda C. Oosthuizen

Theileria parva is the causative agent of Corridor disease in cattle in South Africa. The African buffalo (Syncerus caffer) is the reservoir host, and, as these animals are important for eco-tourism in South Africa, it is compulsory to test and certify them disease free prior to translocation. A T. parva-specific real-time polymerase chain reaction (PCR) test based on the small subunit ribosomal RNA (18S rRNA) gene is one of the tests used for the diagnosis of the parasite in buffalo and cattle in South Africa. However, because of the high similarity between the 18S rRNA gene sequences of T. parva and Theileria sp. (buffalo), the latter is also amplified by the real-time PCR primers, although it is not detected by the T. parva-specific hybridization probes. Preliminary sequencing studies have revealed a small number of sequence differences within the 18S rRNA gene in both species but the extent of this sequence variation is unknown. The aim of the current study was to sequence the 18S rRNA genes of T. parva and Theileria sp. (buffalo), and to determine whether all identified genotypes can be correctly detected by the real-time PCR assay. The reverse line blot (RLB) hybridization assay was used to identify T. parva and Theileria sp. (buffalo) positive samples from buffalo blood samples originating from the Kruger National Park, Hluhluwe-iMfolozi Park, the Greater Limpopo Transfrontier Park, and a private game ranch in the Hoedspruit area. T. parva and Theileria sp. (buffalo) were identified in 42% and 28%, respectively, of 252 samples, mainly as mixed infections. The full-length 18S rRNA gene of selected samples was amplified, cloned and sequenced. From a total of 20 sequences obtained, 10 grouped with previously published T. parva sequences from GenBank while 10 sequences grouped with a previously published Theileria sp. (buffalo) sequence. All these formed a monophyletic group with known pathogenic Theileria species. Our phylogenetic analyses confirm the distinction between Theileria sp. (buffalo) and T. parva and indicate the existence of a single group of T. parva and two Theileria sp. (buffalo) 18S rRNA gene variants in the African buffalo. Despite the observed variation in the full-length parasite 18S rRNA gene sequences, the area in the V4 hypervariable region where the RLB and real-time PCR hybridization probes were developed was relatively conserved. The T. parva specific real-time PCR assay was able to successfully detect all T. parva variants and, although amplicons were obtained from Theileria sp. (buffalo) DNA, none of the Theileria sp. (buffalo) 18S rRNA sequence variants were detected by the T. parva-specific hybridization probes.


Parasites & Vectors | 2015

Tick-borne haemoparasites in African buffalo (Syncerus caffer) from two wildlife areas in Northern Botswana

Dewald Eygelaar; Ferran Jori; Mokganedi Mokopasetso; Kgomotso P. Sibeko; Nicola E. Collins; Ilse Vorster; Milana Troskie; Marinda C. Oosthuizen

BackgroundThe African buffalo (Syncerus caffer) is a host for many pathogens known to cause economically important diseases and is often considered an important reservoir for livestock diseases. Theileriosis, heartwater, babesiosis and anaplasmosis are considered the most important tick-borne diseases of livestock in sub-Saharan Africa, resulting in extensive economic losses to livestock farmers in endemic areas. Information on the distribution of tick-borne diseases and ticks is scarce in Northern Botswana. Nevertheless, this data is necessary for targeting surveillance and control measures in livestock production at national level.MethodsIn order to address this gap, we analyzed 120 blood samples from buffalo herds for the presence of common tick-borne haemoparasites causing disease in livestock, collected in two of the main wildlife areas of Northern Botswana: the Chobe National Park (CNP, n = 64) and the Okavango Delta (OD, n = 56).ResultsAnalysis of the reverse line blot (RLB) hybridization assay results revealed the presence of Theileria, Babesia, Anaplasma and Ehrlichia species, either as single or mixed infections. Among the Theileria spp. present, T. parva (60%) and T. mutans (37%) were the most prevalent. Other species of interest were Anaplasma marginale subsp. centrale (30%), A. marginale (20%), Babesia occultans (23%) and Ehrlichia ruminantium (6%). The indirect fluorescent antibody test (IFAT) indicated 74% of samples to be positive for the presence of T. parva antibodies. Quantitative real-time PCR (qPCR) detected the highest level of animals infected with T. parva (81% of the samples). The level of agreement between the tests for detection of T. parva positive animals was higher between qPCR and IFAT (kappa = 0.56), than between qPCR and RLB (kappa = 0.26) or the latter and IFAT (kappa = 0.15).ConclusionsThis is the first report of tick-borne haemoparasites in African buffalo from northern Botswana, where animals from the CNP showed higher levels of infection than those from OD. Considering the absence of fences separating wildlife and livestock in the CNP and the higher levels of some parasite species in buffalo from that area, surveillance of tick-borne diseases in livestock at the interface in the CNP should be prioritized.


Veterinary Parasitology | 2010

Four p67 alleles identified in South African Theileria parva field samples

Kgomotso P. Sibeko; Dirk Geysen; Marinda C. Oosthuizen; Conrad A. Matthee; Milana Troskie; Frederick T. Potgieter; Jacobus A.W. Coetzer; Nicola E. Collins

Previous studies characterizing the Theileria parva p67 gene in East Africa revealed two alleles. Cattle-derived isolates associated with East Coast fever (ECF) have a 129bp deletion in the central region of the p67 gene (allele 1), compared to buffalo-derived isolates with no deletion (allele 2). In South Africa, Corridor disease outbreaks occur if there is contact between infected buffalo and susceptible cattle in the presence of vector ticks. Although ECF was introduced into South Africa in the early 20th century, it has been eradicated and it is thought that there has been no cattle to cattle transmission of T. parva since. The variable region of the p67 gene was amplified and the gene sequences analyzed to characterize South African T. parva parasites that occur in buffalo, in cattle from farms where Corridor disease outbreaks were diagnosed and in experimentally infected cattle. Four p67 alleles were identified, including alleles 1 and 2 previously detected in East African cattle and buffalo, respectively, as well as two novel alleles, one with a different 174bp deletion (allele 3), the other with a similar sequence to allele 3 but with no deletion (allele 4). Sequence variants of allele 1 were obtained from field samples originating from both cattle and buffalo. Allele 1 was also obtained from a bovine that tested T. parva positive from a farm near Ladysmith in the KwaZulu-Natal Province. East Coast fever was not diagnosed on this farm, but the p67 sequence was identical to that of T. parva Muguga, an isolate that causes ECF in Kenya. Variants of allele 2 were obtained from all T. parva samples from both buffalo and cattle, except Lad 10 and Zam 5. Phylogenetic analysis revealed that alleles 3 and 4 are monophyletic and diverged early from the other alleles. These novel alleles were not identified from South African field samples collected from cattle; however allele 3, with a p67 sequence identical to those obtained in South African field samples from buffalo, was obtained from a Zambian field isolate of a naturally infected bovine diagnosed with ECF. The p67 genetic profiles appear to be more complex than previously thought and cannot be used to distinguish between cattle- and buffalo-derived T. parva isolates in South Africa. The significance of the different p67 alleles, particularly the novel variants, in the epidemiology of theileriosis in South Africa still needs to be determined.


Veterinary Microbiology | 2013

Genetic analysis of the VP2-encoding gene of canine parvovirus strains from Africa

Banenat B. Dogonyaro; Anna-Mari Bosman; Kgomotso P. Sibeko; Estelle Hildegard Venter; Moritz Van Vuuren

Since the emergence of canine parvovirus type-2 (CPV-2) in the early 1970s, it has been evolving into novel genetic and antigenic variants (CPV-2a, 2b and 2c) that are unevenly distributed throughout the world. Genetic characterization of CPV-2 has not been documented in Africa since 1998 apart from the study carried out in Tunisia 2009. A total of 139 field samples were collected from South Africa and Nigeria, detected using PCR and the full length VP2-encoding gene of 27 positive samples were sequenced and genetically analyzed. Nigerian samples (n=6), South Africa (n=19) and vaccine strains (n=2) were compared with existing sequences obtained from GenBank. The results showed the presence of both CPV-2a and 2b in South Africa and only CPV-2a in Nigeria. No CPV-2c strain was detected during this study. Phylogenetic analysis showed a clustering not strictly associated with the geographical origin of the analyzed strains, although most of the South African strains tended to cluster together and the viral strains analyzed in this study were not completely distinct from CPV-2 strains from other parts of the world. Amino acid analysis showed predicted amino acid changes.


Veterinary Parasitology | 2015

The epidemiology of tick-borne haemoparasites as determined by the reverse line blot hybridization assay in an intensively studied cohort of calves in western Kenya

Nyawira E. Njiiri; B. Mark de C. Bronsvoort; Nicola E. Collins; H.C. Steyn; Milana Troskie; Ilse Vorster; Samuel M. Thumbi; Kgomotso P. Sibeko; Amy Jennings; Ilana Conradie van Wyk; Mary Ndila Mbole-Kariuki; Henry K. Kiara; E. Jane Poole; Olivier Hanotte; Koos Coetzer; Marinda C. Oosthuizen; Mark E. J. Woolhouse; Philip G. Toye

Highlights • A reverse line blot assay was used to estimate tick-borne haemoparasite prevalence in an intensively studied cohort of indigenous cattle in western Kenya.• There were high prevalences of Theileria mutans (71.6%), T. velifera (62.8%), Anaplasma sp. Omatjenne (42.7%), A. bovis (39.9%), Theileria sp. (sable) (32.7%), T. parva (12.9%) and T. taurotragi (8.5%), with minor occurrences of eight other haemoparasites.• The most prevalent haemoparasites were mostly present as coinfections, with strong associations between several of the Theileria parasites, in particular T. velifera with Theileria sp. sable and T. mutans, and T. parva with T. taurotragi.• Comparison of RLB and serological results indicated that indigenous cattle seem capable of clearing infections of three pathogenic parasites (T. parva, A. marginale and B. bigemina), whereas infections with the mostly benign T. mutans are more persistent.


Veterinary Parasitology | 2011

Analyses of genes encoding Theileria parva p104 and polymorphic immunodominant molecule (PIM) reveal evidence of the presence of cattle-type alleles in the South African T. parva population.

Kgomotso P. Sibeko; Nicola E. Collins; Marinda C. Oosthuizen; Milana Troskie; Frederick T. Potgieter; Jacobus A.W. Coetzer; Dirk Geysen


Archives of Virology | 2013

Genetic characterization of bovine viral diarrhoea (BVD) viruses: confirmation of the presence of BVD genotype 2 in Africa

Hg Ularamu; Kgomotso P. Sibeko; Anna-Mari Bosman; Estelle Hildegard Venter; M. van Vuuren


Archive | 2010

Improved molecular diagnostics and characterization of Theileria parva isolates from cattle and buffalo in South Africa

Kgomotso P. Sibeko


Archive | 2014

Molecular characterization of Theileria parva field strains derived from cattle and buffalo sympatric populations of Northern Tanzania

Mwega Elisa; Paul Gwakisa; Kgomotso P. Sibeko; Marinda C. Oosthuizen; Dirk Geysen; Morogoro Tanzania

Collaboration


Dive into the Kgomotso P. Sibeko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dirk Geysen

Institute of Tropical Medicine Antwerp

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge