Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Khadija Wahni is active.

Publication


Featured researches published by Khadija Wahni.


Science | 2009

A periplasmic reducing system protects single cysteine residues from oxidation.

Matthieu Depuydt; Stephen E. Leonard; Didier Vertommen; Katleen Denoncin; Pierre Morsomme; Khadija Wahni; Joris Messens; Kate S. Carroll; Jean-François Collet

Periplasmic Redox Regulation The oxidation state of intracellular and extracellular proteins are carefully managed by cellular redox machineries. Depuydt et al. (p. 1109) discovered a reducing system that protects single cysteine residues from oxidation in the bacterial periplasm. DsbG, a thioredoxin-related protein, appears to be a key player in that system and is the first reductase identified in the periplasm of Escherichia coli. Together with DsbC, DsbG controls the global sulfenic acid content of this compartment. Sulfenic acid formation is a major posttranslational modification in the periplasm, and three homologous L,D-transpeptidases are substrates of DsbG. Sulfenic acid formation is not restricted to E. coli, but is ubiquitous. Because proteins from the thioredoxin superfamily are widespread, similar thioredoxin-related proteins may control cellular sulfenic acid more widely. A thioredoxin-like enzyme controls the oxidation state of the bacterial periplasm. The thiol group of the amino acid cysteine can be modified to regulate protein activity. The Escherichia coli periplasm is an oxidizing environment in which most cysteine residues are involved in disulfide bonds. However, many periplasmic proteins contain single cysteine residues, which are vulnerable to oxidation to sulfenic acids and then irreversibly modified to sulfinic and sulfonic acids. We discovered that DsbG and DsbC, two thioredoxin-related proteins, control the global sulfenic acid content of the periplasm and protect single cysteine residues from oxidation. DsbG interacts with the YbiS protein and, along with DsbC, regulates oxidation of its catalytic cysteine residue. Thus, a potentially widespread mechanism controls sulfenic acid modification in the cellular environment.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Sulfenome mining in Arabidopsis thaliana

Cezary Waszczak; Salma Akter; Dominique Eeckhout; Geert Persiau; Khadija Wahni; Nandita Bodra; Inge Van Molle; Barbara De Smet; Didier Vertommen; Kris Gevaert; Geert De Jaeger; Marc Van Montagu; Joris Messens; Frank Van Breusegem

Significance When oxygen gets incompletely reduced, reactive oxygen species (ROS) are generated. These ROS molecules can harm the building blocks of the cell but are also important signaling molecules. Until now, the ROS language of the cell has not been understood and a clear view is needed on how the cell differentiates metabolic ROS noise from ROS that allows signaling, regulation, and protection. To address this question, we focused on Arabidopsis thaliana and identified the proteins that react with hydrogen peroxide on the thiol of the amino acid cysteine, which after reaction forms a sulfenic acid. The characterization of the plant sulfenome improves the understanding of important ROS signaling pathways. Reactive oxygen species (ROS) have been shown to be potent signaling molecules. Today, oxidation of cysteine residues is a well-recognized posttranslational protein modification, but the signaling processes steered by such oxidations are poorly understood. To gain insight into the cysteine thiol-dependent ROS signaling in Arabidopsis thaliana, we identified the hydrogen peroxide (H2O2)-dependent sulfenome: that is, proteins with at least one cysteine thiol oxidized to a sulfenic acid. By means of a genetic construct consisting of a fusion between the C-terminal domain of the yeast (Saccharomyces cerevisiae) AP-1–like (YAP1) transcription factor and a tandem affinity purification tag, we detected ∼100 sulfenylated proteins in Arabidopsis cell suspensions exposed to H2O2 stress. The in vivo YAP1-based trapping of sulfenylated proteins was validated by a targeted in vitro analysis of DEHYDROASCORBATE REDUCTASE2 (DHAR2). In DHAR2, the active site nucleophilic cysteine is regulated through a sulfenic acid-dependent switch, leading to S-glutathionylation, a protein modification that protects the protein against oxidative damage.


Molecular Microbiology | 2012

Mycoredoxin-1 is one of the missing links in the oxidative stress defence mechanism of Mycobacteria.

Koen Van Laer; Lieven Buts; Nicolas Foloppe; Didier Vertommen; Karolien Van Belle; Khadija Wahni; Goedele Roos; Lennart Nilsson; Luis M. Mateos; Mamta Rawat; Nico A. J. van Nuland; Joris Messens

To survive hostile conditions, the bacterial pathogen Mycobacterium tuberculosis produces millimolar concentrations of mycothiol as a redox buffer against oxidative stress. The reductases that couple the reducing power of mycothiol to redox active proteins in the cell are not known. We report a novel mycothiol‐dependent reductase (mycoredoxin‐1) with a CGYC catalytic motif. With mycoredoxin‐1 and mycothiol deletion strains of Mycobacterium smegmatis, we show that mycoredoxin‐1 and mycothiol are involved in the protection against oxidative stress. Mycoredoxin‐1 acts as an oxidoreductase exclusively linked to the mycothiol electron transfer pathway and it can reduce S‐mycothiolated mixed disulphides. Moreover, we solved the solution structures of oxidized and reduced mycoredoxin‐1, revealing a thioredoxin fold with a putative mycothiol‐binding site. With HSQC snapshots during electron transport, we visualize the reduction of oxidized mycoredoxin‐1 as a function of time and find that mycoredoxin‐1 gets S‐mycothiolated on its N‐terminal nucleophilic cysteine. Mycoredoxin‐1 has a redox potential of −218 mV and hydrogen bonding with neighbouring residues lowers the pKa of its N‐terminal nucleophilic cysteine. Determination of the oxidized and reduced structures of mycoredoxin‐1, better understanding of mycothiol‐dependent reactions in general, will likely give new insights in how M. tuberculosis survives oxidative stress in human macrophages.


Molecular & Cellular Proteomics | 2015

Protein Methionine Sulfoxide Dynamics in Arabidopsis thaliana under Oxidative Stress.

Silke Jacques; Bart Ghesquière; Pieter-Jan De Bock; Hans Demol; Khadija Wahni; Patrick Willems; Joris Messens; Frank Van Breusegem; Kris Gevaert

Reactive oxygen species such as hydrogen peroxide can modify proteins via direct oxidation of their sulfur-containing amino acids, cysteine and methionine. Methionine oxidation, studied here, is a reversible posttranslational modification that is emerging as a mechanism by which proteins perceive oxidative stress and function in redox signaling. Identification of proteins with oxidized methionines is the first prerequisite toward understanding the functional effect of methionine oxidation on proteins and the biological processes in which they are involved. Here, we describe a proteome-wide study of in vivo protein-bound methionine oxidation in plants upon oxidative stress using Arabidopsis thaliana catalase 2 knock-out plants as a model system. We identified over 500 sites of oxidation in about 400 proteins and quantified the differences in oxidation between wild-type and catalase 2 knock-out plants. We show that the activity of two plant-specific glutathione S-transferases, GSTF9 and GSTT23, is significantly reduced upon oxidation. And, by sampling over time, we mapped the dynamics of methionine oxidation and gained new insights into this complex and dynamic landscape of a part of the plant proteome that is sculpted by oxidative stress.


Molecular & Cellular Proteomics | 2015

DYn-2 Based Identification of Arabidopsis Sulfenomes

Salma Akter; Jingjing Huang; Nandita Bodra; Barbara De Smet; Khadija Wahni; Debbie Rombaut; Jarne Pauwels; Kris Gevaert; Kate S. Carroll; Frank Van Breusegem; Joris Messens

Identifying the sulfenylation state of stressed cells is emerging as a strategic approach for the detection of key reactive oxygen species signaling proteins. Here, we optimized an in vivo trapping method for cysteine sulfenic acids in hydrogen peroxide (H2O2) stressed plant cells using a dimedone based DYn-2 probe. We demonstrated that DYn-2 specifically detects sulfenylation events in an H2O2 dose- and time-dependent way. With mass spectrometry, we identified 226 sulfenylated proteins after H2O2 treatment of Arabidopsis cells, residing in the cytoplasm (123); plastid (68); mitochondria (14); nucleus (10); endoplasmic reticulum, Golgi and plasma membrane (7) and peroxisomes (4). Of these, 123 sulfenylated proteins have never been reported before to undergo cysteine oxidative post-translational modifications in plants. All in all, with this DYn-2 approach, we have identified new sulfenylated proteins, and gave a first glance on the locations of the sulfenomes of Arabidopsis thaliana.


Molecular Microbiology | 2015

The Corynebacterium glutamicum mycothiol peroxidase is a reactive oxygen species‐scavenging enzyme that shows promiscuity in thiol redox control

Brandán Pedre; Inge Van Molle; Almudena F. Villadangos; Khadija Wahni; Didier Vertommen; Lucía Turell; Huriye Erdogan; Luis M. Mateos; Joris Messens

Cysteine glutathione peroxidases (CysGPxs) control oxidative stress levels by reducing hydroperoxides at the expense of cysteine thiol (‐SH) oxidation, and the recovery of their peroxidatic activity is generally accomplished by thioredoxin (Trx). Corynebacterium glutamicum mycothiol peroxidase (Mpx) is a member of the CysGPx family. We discovered that its recycling is controlled by both the Trx and the mycothiol (MSH) pathway. After H2O2 reduction, a sulfenic acid (‐SOH) is formed on the peroxidatic cysteine (Cys36), which then reacts with the resolving cysteine (Cys79), forming an intramolecular disulfide (S‐S), which is reduced by Trx. Alternatively, the sulfenic acid reacts with MSH and forms a mixed disulfide. Mycoredoxin 1 (Mrx1) reduces the mixed disulfide, in which Mrx1 acts in combination with MSH and mycothiol disulfide reductase as a biological relevant monothiol reducing system. Remarkably, Trx can also take over the role of Mrx1 and reduce the Mpx‐MSH mixed disulfide using a dithiol mechanism. Furthermore, Mpx is important for cellular survival under H2O2 stress, and its gene expression is clearly induced upon H2O2 challenge. These findings add a new dimension to the redox control and the functioning of CysGPxs in general.


Journal of Biological Chemistry | 2015

Corynebacterium diphtheriae Methionine Sulfoxide Reductase A Exploits a Unique Mycothiol Redox Relay Mechanism

Maria-Armineh Tossounian; Brandán Pedre; Khadija Wahni; Huriye Erdogan; Didier Vertommen; Inge Van Molle; Joris Messens

Background: Methionine sulfoxide post-translational modifications have an important new signaling role in cells. Results: Methionine sulfoxide reductase MsrA of the pathogenic actinomycete Corynebacterium diphtheriae (Cd-MsrA) uses a unique intramolecular redox relay mechanism coupled to mycothiol. Conclusion: For methionine sulfoxide control, Cd-MsrA is flexible in receiving electrons from both the thioredoxin and the mycothiol pathways. Significance: C. diphtheriae MsrA is a redox regulator for methionine sulfoxide signaling. Methionine sulfoxide reductases are conserved enzymes that reduce oxidized methionines in proteins and play a pivotal role in cellular redox signaling. We have unraveled the redox relay mechanisms of methionine sulfoxide reductase A of the pathogen Corynebacterium diphtheriae (Cd-MsrA) and shown that this enzyme is coupled to two independent redox relay pathways. Steady-state kinetics combined with mass spectrometry of Cd-MsrA mutants give a view of the essential cysteine residues for catalysis. Cd-MsrA combines a nucleophilic cysteine sulfenylation reaction with an intramolecular disulfide bond cascade linked to the thioredoxin pathway. Within this cascade, the oxidative equivalents are transferred to the surface of the protein while releasing the reduced substrate. Alternatively, MsrA catalyzes methionine sulfoxide reduction linked to the mycothiol/mycoredoxin-1 pathway. After the nucleophilic cysteine sulfenylation reaction, MsrA forms a mixed disulfide with mycothiol, which is transferred via a thiol disulfide relay mechanism to a second cysteine for reduction by mycoredoxin-1. With x-ray crystallography, we visualize two essential intermediates of the thioredoxin relay mechanism and a cacodylate molecule mimicking the substrate interactions in the active site. The interplay of both redox pathways in redox signaling regulation forms the basis for further research into the oxidative stress response of this pathogen.


Journal of Molecular Biology | 2009

Coupling of domain swapping to kinetic stability in a thioredoxin mutant.

Abel Garcia-Pino; Sergio Martínez-Rodríguez; Khadija Wahni; Lode Wyns; Remy Loris; Joris Messens

The thioredoxin (Trx) fold is a small monomeric domain that is ubiquitous in redox-active enzymes. Trxs are characterized by a typical WCGPC active-site sequence motif. A single active-site mutation of the tryptophan to an alanine in Staphylococcus aureus Trx converts the oxidized protein into a biologically inactive domain-swapped dimer. While the monomeric protein unfolds reversibly in a two-state manner, the oxidized dimeric form is kinetically stable and converts to the monomeric form upon refolding. After reduction, the half-life of the dimer decreases many orders of magnitude to approximately 4.3 h, indicating that the active-site disulfide between Cys29 and Cys32 is an important determinant for the kinetics of unfolding. We propose kinetic stability as a possible evolutionary strategy in the evolution of multimeric proteins from their monomeric ancestors by domain swapping, which, for this biologically inactive Trx mutant, turned out to be an evolutionary dead end.


Protein Science | 2014

The concerted action of a positive charge and hydrogen bonds dynamically regulates the pKa of the nucleophilic cysteine in the NrdH‐redoxin family

Koen Van Laer; Margarida Oliveira; Khadija Wahni; Joris Messens

NrdH‐redoxins shuffle electrons from the NADPH pool in the cell to Class Ib ribonucleotide reductases, which in turn provide the precursors for DNA replication and repair. NrdH‐redoxins have a CVQC active site motif and belong to the thioredoxin‐fold protein family. As for other thioredoxin‐fold proteins, the pKa of the nucleophilic cysteine of NrdH‐redoxins is of particular interest since it affects the catalytic reaction rate of the enzymes. Recently, the pKa value of this cysteine in Corynebacterium glutamicum and Mycobacterium tuberculosis NrdH‐redoxins were determined, but structural insights explaining the relatively low pKa remained elusive. We subjected C. glutamicum NrdH‐redoxin to an extensive molecular dynamics simulation to expose the factors regulating the pKa of the nucleophilic cysteine. We found that the nucleophilic cysteine receives three hydrogen bonds from residues within the CVQC active site motif. Additionally, a fourth hydrogen bond with a lysine located N‐terminal of the active site further lowers the cysteine pKa. However, site‐directed mutagenesis data show that the major contribution to the lowering of the cysteine pKa comes from the positive charge of the lysine and not from the additional Lys‐Cys hydrogen bond. In 12% of the NrdH‐redoxin family, this lysine is replaced by an arginine that also lowers the cysteine pKa. All together, the four hydrogen bonds and the electrostatic effect of a lysine or an arginine located N‐terminally of the active site dynamically regulate the pKa of the nucleophilic cysteine in NrdH‐redoxins.


Journal of Biological Chemistry | 2013

NrdH-redoxin of Mycobacterium tuberculosis and Corynebacterium glutamicum Dimerizes at High Protein Concentration and Exclusively Receives Electrons from Thioredoxin Reductase

Koen Van Laer; Aleksandra M. Dziewulska; Marcus Fislage; Khadija Wahni; Abderahim Hbeddou; Jean-François Collet; Wim Versées; Luis M. Mateos; Veronica Tamu Dufe; Joris Messens

Background: NrdH-redoxins provide the electrons for the reduction of ribonucleotides. Results: We characterized NrdH-redoxin from Mycobacterium tuberculosis and Corynebacterium glutamicum. Conclusion: Both NrdH-redoxins are monomers but form non-swapped dimers at high protein concentration. They are reduced by thioredoxin reductase and not by mycothiol. Significance: NrdH-redoxin is a potential anti-tuberculosis drug target, and new structural and functional insights help to understand its mode of action. NrdH-redoxins are small reductases with a high amino acid sequence similarity with glutaredoxins and mycoredoxins but with a thioredoxin-like activity. They function as the electron donor for class Ib ribonucleotide reductases, which convert ribonucleotides into deoxyribonucleotides. We solved the x-ray structure of oxidized NrdH-redoxin from Corynebacterium glutamicum (Cg) at 1.5 Å resolution. Based on this monomeric structure, we built a homology model of NrdH-redoxin from Mycobacterium tuberculosis (Mt). Both NrdH-redoxins have a typical thioredoxin fold with the active site CXXC motif located at the N terminus of the first α-helix. With size exclusion chromatography and small angle x-ray scattering, we show that Mt_NrdH-redoxin is a monomer in solution that has the tendency to form a non-swapped dimer at high protein concentration. Further, Cg_NrdH-redoxin and Mt_NrdH-redoxin catalytically reduce a disulfide with a specificity constant 1.9 × 106 and 5.6 × 106 m−1 min−1, respectively. They use a thiol-disulfide exchange mechanism with an N-terminal cysteine pKa lower than 6.5 for nucleophilic attack, whereas the pKa of the C-terminal cysteine is ∼10. They exclusively receive electrons from thioredoxin reductase (TrxR) and not from mycothiol, the low molecular weight thiol of actinomycetes. This specificity is shown in the structural model of the complex between NrdH-redoxin and TrxR, where the two surface-exposed phenylalanines of TrxR perfectly fit into the conserved hydrophobic pocket of the NrdH-redoxin. Moreover, nrdh gene deletion and disruption experiments seem to indicate that NrdH-redoxin is essential in C. glutamicum.

Collaboration


Dive into the Khadija Wahni's collaboration.

Top Co-Authors

Avatar

Joris Messens

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Didier Vertommen

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Inge Van Molle

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brandán Pedre

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Jean-François Collet

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge