Khaled Abou-Aisha
German University in Cairo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Khaled Abou-Aisha.
Colloids and Surfaces B: Biointerfaces | 2014
Mariane M. Farid; Rania M. Hathout; Mahmoud Fawzy; Khaled Abou-Aisha
Gene silencing mediated by small interfering RNA (siRNA) has gained increasing interest through the past few decades. However, the partial negative charge and the susceptibility to degradation by nucleases have hampered its use in a naked form. In this study, we investigated the use of chitosan nanoparticles as non-viral delivery carriers of siRNA. As a model target, we selected the scavenger receptor (SR-B1), due to its proposed involvement in hepatitis C virus (HCV) internalization. Low molecular weight (LMW) chitosan nanoparticles were prepared by simple ionic gelation using sodium tripolyphosphate (TPP) as a cross-linking agent; a fixed chitosan and TPP concentration of 0.1% was used, and a chitosan to TPP weight ratios of 3:1, 5:1, and 9:1 were investigated. Nanoparticle uptake efficiency was measured using FITC-labeled chitosan nanoparticles and silencing of scavenger receptor class B type 1 (SR-B1) in HepG2 cell line was tested using Western blot analysis. Nanoparticles produced were spherical in shape with an optimum particle size and distribution. The uptake of FITC-labeled nanoparticles by HepG2 cells was found to be both concentration and time dependent. Furthermore, Western Blot analysis showed that SR-B1 siRNA was able to silence the scavenger receptor for up to 96 h of incubation with HepG2 cells.
International Journal of Nanomedicine | 2016
Suzanne Nour El Din; Tarek A. El-Tayeb; Khaled Abou-Aisha; Mohamed El-Azizi
Silver nanoparticles (AgNPs) have been used as potential antimicrobial agents against resistant pathogens. We investigated the possible therapeutic use of AgNPs in combination with visible blue light against a multidrug resistant clinical isolate of Pseudomonas aeruginosa in vitro and in vivo. The antibacterial activity of AgNPs against P. aeruginosa (1×105 colony forming unit/mL) was investigated at its minimal inhibitory concentration (MIC) and sub-MIC, alone and in combination with blue light at 460 nm and 250 mW for 2 hours. The effect of this combined therapy on the treated bacteria was then visualized using transmission electron microscope. The therapy was also assessed in the prevention of biofilm formation by P. aeruginosa on AgNP-impregnated gelatin biopolymer discs. Further, in vivo investigations were performed to evaluate the efficacy of the combined therapy to prevent burn-wound colonization and sepsis in mice and, finally, to treat a real infected horse with antibiotic-unresponsive chronic wound. The antimicrobial activity of AgNPs and visible blue light was significantly enhanced (P<0.001) when both agents were combined compared to each agent alone when AgNPs were tested at MIC, 1/2, or 1/4 MIC. Transmission electron microscope showed significant damage to the cells that were treated with the combined therapy compared to other cells that received either the AgNPs or blue light. In addition, the combined treatment significantly (P<0.001) inhibited biofilm formation by P. aeruginosa on gelatin discs compared to each agent individually. Finally, the combined therapy effectively treated a horse suffering from a chronic wound caused by mixed infection, where signs of improvement were observed after 1 week, and the wound completely healed after 4 weeks. To our knowledge, this combinatorial therapy has not been investigated before. It was proved efficient and promising in managing infections caused by multidrug resistant bacteria and could be used as an alternative to conventional antibiotic therapy.
Colloids and Surfaces B: Biointerfaces | 2016
Salma M. Abozeid; Rania M. Hathout; Khaled Abou-Aisha
Cholamine surface-modified gelatin nanoparticles prepared by the double desolvation method using acetone as a dehydrating agent were selected and potentially evaluated as non viral vectors of siRNA targeting a metastatic gene AEG-1 in MCF-7 breast carcinoma cells. The ability of modified gelatin nanoparticle to complex and deliver siRNA for gene silencing was investigated. Hence, Particle size, surface charge (zeta potential) and morphology of siRNA/Gelatin nanoparticles (siGNPs) were characterized via dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscope (TEM). Moreover, the nanoparticles cytotoxicity, loading efficiency and interaction with MCF-7 human breast carcinoma cells were evaluated. Cationized GNPs of mean size range of 174nm and PDI of 0.101 were produced. The loading efficiency of siGNPs at a Nitrogen/Phosphate (N/P) ratio (w/w) of 200:1 was approximately 96%. Cellular uptake was evaluated after FITC conjugation where the particles produced high transfection efficiency. Finally, ELISA analysis of AEG-1/MTDH expression demonstrated the gene silencing effect of siGNPs, as more than 75% MTDH protein were inhibited. Our data indicate that cholamine modified GNPs pose a promising non-viral siRNA carrier for altering gene expression in MCF-7 breast cancer cells with many advantages such as relatively high gene transfection efficiency and efficient silencing ability.
Genetic Testing and Molecular Biomarkers | 2012
Mohamed Z. Gad; Mohamed F. Abdel Rahman; Ingy M. Hashad; Sahar M. Abdel-Maksoud; Nabil Farag; Khaled Abou-Aisha
AIM The aim of this study was to detect endothelial nitric oxide synthase (eNOS) Glu298Asp gene variants in a random sample of the Egyptian population, compare it with those from other populations, and attempt to correlate these variants with serum levels of nitric oxide (NO). The association of eNOS genotypes or serum NO levels with the incidence of acute myocardial infarction (AMI) was also examined. METHODS One hundred one unrelated healthy subjects and 104 unrelated AMI patients were recruited randomly from the 57357 Hospital and intensive care units of El Demerdash Hospital and National Heart Institute, Cairo, Egypt. eNOS genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism. Serum NO was determined spectrophotometrically. RESULTS The genotype distribution of eNOS Glu298Asp polymorphism determined for our sample was 58.42% GG (wild type), 33.66% GT, and 7.92% TT genotypes while allele frequencies were 75.25% and 24.75% for G and T alleles, respectively. No significant association between serum NO and specific eNOS genotype could be detected. No significant correlation between eNOS genotype distribution or allele frequencies and the incidence of AMI was observed. CONCLUSION The present study demonstrated the predominance of the homozygous genotype GG over the heterozygous GT and homozygous TT in random samples of Egyptian population. It also showed the lack of association between eNOS genotypes and mean serum levels of NO, as well as the incidence of AMI.
Biomarkers | 2010
Mohamed Z. Gad; Sally I. Hassanein; Sahar M. Abdel-Maksoud; Gamal M. Shaban; Khaled Abou-Aisha; Hossam A. Elgabarty
Serum asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), l-arginine, and C-reactive protein (hsCRP) levels were assessed in 100 Egyptian male 35–50-year-old patients with coronary artery disease (CAD), classified into: patients under conservative medical treatment, patients directed for percutaneous coronary interventions, patients directed for coronary artery bypass graft operation and patients suffering from acute myocardial infarction. Age- and sex-matched controls (n = 100) were included. Correlation between serum levels of biomarkers and dimethylarginine dimethylaminohydrolase-2 (DDAH-2) genotypes was studied. No association between biomarkers and carriage of the specific DDAH2 SNP2 (-449C/G, rs805305) genotype was detected. Further studies are required to confirm the contribution of the biomarkers in the predisposition of CAD.
PLOS ONE | 2011
Alyaa M. Abdel-Haleem; Maha I. El-Zeiry; Laila Mahran; Khaled Abou-Aisha; Mona Rady; Jan Rohde; Marwa Mostageer; Hilde Spahn-Langguth
Urinary bladder cancer (UBC) ranks ninth in worldwide cancer. In Egypt, the pattern of bladder cancer is unique in that both the transitional and squamous cell types prevail. Despite much research on the topic, it is still difficult to predict tumor progression, optimal therapy and clinical outcome. The reduced folate carrier (RFC/SLC19A1) is the major transport system for folates in mammalian cells and tissues. RFC is also the primary means of cellular uptake for antifolate cancer chemotherapeutic drugs, however, membrane transport of antifolates by RFC is considered as limiting to antitumor activity. The purpose of this study was to compare the mRNA expression level of RFC/SLC19A1 in urothelial and non-urothelial variants of bladder carcinomas. Quantification of RFC mRNA in the mucosa of 41 untreated bladder cancer patients was performed using RT-qPCR. RFC mRNA steady-state levels were ∼9-fold higher (N = 39; P<0.0001) in bladder tumor specimens relative to normal bladder mRNA. RFC upregulation was strongly correlated with tumor type (urothelial vs. non-urothelial; p<0.05) where median RFC mRNA expression was significantly (p<0.05) higher in the urothelial (∼14-fold) compared to the non-urothelial (∼4-fold) variant. This may account for the variation in response to antifolate-containing regimens used in the treatment of either type. RFC mRNA levels were not associated with tumor grade (I, II and III) or stage (muscle-invasive vs. non-muscle invasive) implying that RFC cannot be used for prognostic purposes in bladder carcinomas and its increased expression is an early event in human bladder tumors pathogenesis. Further, RFC can be considered as a potential marker for predicting response to antifolate chemotherapy in urothelial carcinomas.
Archives of Medical Science | 2015
Mohamed F. Abdel Rahman; Ingy M. Hashad; Khaled Abou-Aisha; Sahar M. Abdel-Maksoud; Mohamed Z. Gad
Introduction The enzyme paraoxonase-1 (PON1) represents an endogenous defense mechanism against vascular oxidative stress, thereby contributing to the prevention of atherosclerosis. Several polymorphisms have been reported in the PON1 gene, including Q192R. PON1 phenotype is commonly expressed as the paraoxonase/arylesterase ratio (PON/ARE). The major aim of this study was to investigate the association between PON1 Q192R polymorphism, PON1 phenotypes and the incidence of early-onset acute myocardial infarction (AMI) in Egyptians. Material and methods The study subjects consisted of 102 AMI patients and 72 age-matched healthy controls. Genotyping and enzyme activities were determined using PCR-RFLP and kinetic spectrophotometric assays, respectively. Results The genotype distribution for the PON1 gene was significantly different between AMI patients (QQ = 38.24%, QR = 49.02%, RR = 12.75%) and controls (QQ = 66.67%, QR = 25%, RR = 8.33%). Allele frequencies were also significantly different between patients (Q = 62.75%, R = 37.25%) and controls (Q = 79.17%, R = 20.83%). The genotypes QR and RR showed higher risk for AMI compared to the homozygous QQ (odds ratio (OR) = 3.231, p < 0.001). The average PON/ARE ratio in MI patients (1.187 ±0.1) did not differ significantly from controls (1.118 ±0.26). However, it showed a significant difference among different genotypes in both AMI patients (QQ = 0.91 ±0.11, QR = 1.09 ±0.11 and RR = 2.65 ±0.4) (p = 0.0002) and controls (QQ = 0.68 ±0.1, QR = 1.07 ±0.11 and RR = 4.89 ±2.84) (p < 0.0001). Conclusions PON1 192R allele represents an independent risk factor for early-onset AMI in Egyptians, and PON1 Q192R polymorphism modulates the paraoxonase phenotype.
Journal of Genetics | 2011
Mohamed Z. Gad; Sally I. Hassanein; Sahar M. Abdel-Maksoud; Gamal M. Shaban; Khaled Abou-Aisha
1992). Elevated levels ofADMA capable of inhibiting endothelial nitric oxide syn-thase (eNOS) have been found in several disorders includ-ing coronary artery disease (CAD) (Boger 2004). Nowa-days, ADMA is regarded as a novel cardiovascular riskfactor and is degraded mainly by an intracellular enzymetermed dimethylarginine dimethylaminohydrolase (DDAH),after uptake from the circulation. DDAH degrades ADMA tocitrulline and dimethylamine (Dayoub
Infection and Drug Resistance | 2016
Mariam Madkour Sallam; Khaled Abou-Aisha; Mohamed El-Azizi
Background Gram-positive bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA) and enterococci, have shown a remarkable ability to develop resistance to antimicrobial agents. Objective We aimed to assess possible enhancement of the antimicrobial activity of vancomycin, amoxicillin, clarithromycin, and azithromycin by human polyclonal intravenous immunoglobulin G (IVIG) against 34 multidrug-resistant (MDR) bacterial isolates, including MRSA, Enterococcus faecium, and Enterococcus faecalis. Materials and methods Double combinations of the antibiotics with the IVIG were assessed by checkerboard assay, where the interaction was evaluated with respect to the minimum inhibitory concentration (MIC) of the antibiotics. The results of the checkerboard assay were verified in vitro using time-kill assay and in vivo using an invasive sepsis murine model. Results The checkerboard assay showed that IVIG enhanced the antimicrobial activity of amoxicillin and clarithromycin against isolates from the three groups of bacteria, which were resistant to the same antibiotics when tested in the absence of IVIG. The efficacy of vancomycin against 15% of the tested isolates was enhanced when it was combined with the antibodies. Antagonism was demonstrated in 47% of the E. faecalis isolates when clarithromycin was combined with the IVIG. Synergism was proved in the time-kill assay when amoxicillin was combined with the antibodies; meanwhile, antagonism was not demonstrated in all tested combinations, even in combinations that showed such response in checkerboard assay. Conclusion The suggested approach is promising and could be helpful to enhance the antimicrobial activity of not only effective antibiotics but also antibiotics that have been proven to be ineffective against MDR bacteria. To our knowledge, this combinatorial approach against MDR bacteria, such as MRSA and enterococci, has not been investigated before.
Advances in Cancer: Research & Treatment | 2013
Alshaymaa El-Bahy; Khaled Abou-Aisha; Eman Noaman; Laila Mahran
The limited selectivity of therapeutic agents for tumor cells and their inability to act on poorly vascularized areas of tumors, remain among the primary limitations to cancer therapy. Several studies reported that Salmonella typhimurium VNP20009 (VNP) preferentially targets hypoxic/anoxic cores of solid tumors. Here the authors compare the antitumor effect of VNP with doxorubicin (Dox) and a combination of both agents, in a murine model of Ehrlich ascites carcinoma (EAC). Methods: Mice were randomly divided into four control groups and three treatment groups receiving VNP, Dox, or a combination of both. Plasma levels of the liver enzymes ALT and AST, and levels of urea and creatinine were measured colorimetrically; vascular endothelial growth factor (VEGF) was measured using ELISA and total free radicals were measured using electron spin resonance (ESR). Histopathological studies were performed on liver and tumor tissues. Apoptosis/necrosis and the tumor suppressor protein p53 levels were assayed by immunohistochemistry. Results: VNP treatment resulted in normal levels of ALT, AST, urea and creatinine. Less dense tumor cells with regeneration of skeletal muscle and almost normal architecture of liver tissues were observed in animals receiving VNP and combined therapy. Tumor volumes and VEGF levels were significantly lower in these two groups. Free radicals significantly increased in Dox-receiving group compared to the VNP and the combination group. Late stage apoptotic/necrotic cells were observed in tumor tissues treated with VNP, Dox or their combination, and p53 levels were higher in the same groups. Conclusion: Monotherapy with VNP showed comparable antitumor effects to Dox, but seems to obviate the reported negative side-effects of Dox.