Rania M. Hathout
Ain Shams University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rania M. Hathout.
Aaps Pharmscitech | 2007
Rania M. Hathout; Samar Mansour; Nahed D. Mortada; Ahmed S. Guinedi
The purpose of this study was to formulate topically effective controlled release ophthalmic acetazolamide liposomal formulations. Reverse-phase evaporation and lipid film hydration methods were used for the preparation of reversephase evaporation (REVs) and multilamellar (MLVs) acetazolamide liposomes consisting of egg phosphatidylcholine (PC) and cholesterol (CH) in the molar ratios of (7∶2), (7∶4), (7∶6), and (7∶7) with or without stearylamine (SA) or dicetyl phosphate (DP) as positive and negative charge inducers, respectively. The prepared liposomes were evaluated for their entrapment efficiency and in vitro release. Multilamellar liposomes entrapped greater amounts of drug than REVs liposomes. Drug loading was increased by increasing CH content as well as by inclusion of SA. Drug release rate showed an order of negatively charged > neutral > positively charged liposomes, which is the reverse of the data of drug loading efficiency. Physical stability study indicated that approximately 89%, 77%, and 69% of acetazolamide was retained in positive, negative, and neutral MLVs liposomal formulations up to a period of 3 months at 4°C. The intraocular pressure (IOP)-lowering activity of selected acetazolamide liposomal formulations was determined and compared with that of plain liposomes and acetazolamide solution. Multilamellar acetazolamide liposomes revealed more prolonged effect than REVs liposomes. The positively charged and neutral liposomes exhibited greater lowering in IOP and a more prolonged effect than the negatively charged ones. The positive multilamellar liposomes composed of PC:CH:SA (7:4:1) molar ratio showed the maximal response, which reached a value of −7.8±1.04 mmHg after 3 hours of topical administration.
European Journal of Pharmaceutical Sciences | 2010
Rania M. Hathout; Timothy J. Woodman; Samar Mansour; Nahed D. Mortada; Ahmed S. Geneidi; Richard H. Guy
The objective was to develop a microemulsion formulation for the transdermal delivery of testosterone. Microemulsion formulations were prepared using oleic acid as the oil phase, Tween20 as a surfactant, Transcutol as cosurfactant, and water. The microemulsions were characterized visually, with the polarizing microscope, and by dynamic light scattering. In addition, the pH, conductivity (sigma) and viscosity (eta) of the formulations were measured. Moreover, differential scanning calorimetry and diffusion-ordered nuclear magnetic resonance spectroscopy were used to study the formulations investigated. Conductivity measurements revealed, as a function of the weight fraction of the aqueous phase, the point at which the microemulsion made the transition from water-in-oil to bicontinuous. Alterations in the microstructure of the microemulsions, following incorporation of testosterone, have been evaluated using the same physical parameters (pH, sigma and eta) and via Fourier-transform infrared spectroscopy (FT-IR), (1)H NMR and (13)C NMR. These methods were also used to determine the location of the drug in the colloidal formulation. Finally, testosterone delivery from selected formulations was assessed across porcine skin in vitro in Franz diffusion cells. The physical parameter determinations, combined with the spectroscopic studies, demonstrated that the drug was principally located in the oily domains of the microemulsions. Testosterone was delivered successfully across the skin from the microemulsions examined, with the highest flux achieved (4.6+/-0.6microgcm(-2)h(-1)) from a formulation containing 3% (w/v) of the active drug and the composition (w/w) of 16% oleic acid, 32% Tween20, 32% Transcutol and 20% water. The microemulsions considered offer potentially useful vehicles for the transdermal delivery of testosterone.
International Journal of Biological Macromolecules | 2014
Salma M. Abdel-Hafez; Rania M. Hathout
The aim of this study is to utilize statistical designs and mathematical modeling to end the continuous debate about the different variables that influence the production of nanoparticles using the ionic gelation method between the biopolymer chitosan (CS) and tripolyphosphate (TPP) ion. Preliminary experiments were adopted to extract the optimum conditions for the nanoparticles preparation and model construction. Critical process parameters were screened using the one-factor-at-a-time (OFAT) approach to select optimum experimental regions. Finally, these factors were optimized using two different methods of response surface modeling; the Box-Behnken and the D-optimal. The significant models showed excellent fitting of the data. The two methods were validated using a set of check points and were subsequently compared. Good agreement between actual and predicted values was obtained though the D-optimal model was more successful in predicting the particle size of the prepared nanoparticles with percentage bias as small as 1.49%. Nanoparticles were produced with diameters ranging from 52.21 nm to 400.30 nm, particle polydispersity from 0.06 to 0.40 and suitable morphology. This work provides an overview on the production of chitosan nanoparticles with desirable size enabling their successful use in drugs delivery and targeting or in any nanotechnology or interfacial application.
Colloids and Surfaces B: Biointerfaces | 2013
Rania M. Hathout; Maha Nasr
Transdermal delivery of betahistine hydrochloride encapsulated in various ethyl oleate, Capryol 90(®), Transcutol(®) and water microemulsion formulations was studied. Two different kinds of phase diagrams were constructed for the investigated microemulsion system. Pseudoplastic flow that is preferable for skin delivery was recorded for the investigated microemulsions. A balanced and bicontinuous microemulsion formulation was suggested and showed the highest permeation flux (0.50±0.030mgcm(-2)h(-1)). The effect of the investigated microemulsions on the skin electrical resistance was used to explain the high permeation fluxes obtained. Confocal laser scanning microscopy was used to confirm the permeation enhancement and to reveal the penetration pathways. The results obtained suggest that the proposed microemulsion system highlighted in the current work can serve as a promising alternative delivery means for betahistine hydrochloride.
Molecular Pharmaceutics | 2010
Rania M. Hathout; Samar Mansour; Nahed D. Mortada; Ahmed S. Geneidi; Richard H. Guy
This research determined the uptake of individual components of topically applied microemulsions into the stratum corneum (SC) and assessed their molecular effects on skin barrier function. The microemulsions comprised oleic acid, Tween20, Transcutol and water. The effects of selected formulations, and of the individual components, on the conformational order of the SC intercellular lipids, and on SC hydration, were assessed by infrared spectroscopy. Measurements were made as a function of SC depth by progressively tape-stripping the membrane in the normal way. SC uptake of microemulsion components was quantified via extraction and analysis of the collected tape strips. SC hydration increased in proportion to the water content of the microemulsion. Each of the microemulsion components penetrated into the SC, but to different extents. Oleic acid decreased the conformational order of the SC lipids, and induced some phase separation, as revealed by the frequency shifts and peak areas of the absorbances associated with -CH(2) symmetric and asymmetric stretching vibrations. Tween20 extracted some of the SC intercellular lipids. In summary, SC structure was perturbed by all components of the microemulsions, and the degree of the effects detected was proportional to the level of the respective component present in the skin.
Journal of Controlled Release | 2016
Mina Mehanny; Rania M. Hathout; Ahmed S. Geneidi; Samar Mansour
Curcumin and its derivatives; curcuminoids have been proven as potential remedies in different diseases. However, their delivery carries several challenges owing to their poor aqueous solubility, photodegradation, chemical instability, poor bioavailability and rapid metabolism. This review explores and criticizes the numerous attempts that were adopted through the years to entrap/encapsulate this valuable drug in nanocarriers aiming to reach its most appropriate and successful delivery system.
European Journal of Pharmaceutics and Biopharmaceutics | 2012
Rania M. Hathout; Ahmed H. Elshafeey
The purpose of this study was to develop and characterize a successful colloidal soft nano-carrier viz. microemulsion system, for the transdermal delivery of an angiotensin II receptor blocker: olmesartan medoxomil. Different microemulsion formulations were prepared. The microemulsions were characterized visually, with the polarizing microscope, and by photon correlation spectroscopy. In addition, the pH and conductivity (σ) of the formulations were measured. The type and structure of microemulsions formed were determined using conductivity measurements analysis, Freezing Differential Scanning Calorimetry (FDSC) and Diffusion-Ordered Spectroscopy (DOSY). Alterations in the molecular conformations of porcine skin were determined using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) biophysical assessment. Olmesartan medoxomil delivery from the investigated formulations was assessed across porcine skin ex-vivo using Franz diffusion cells; the drug was analyzed by liquid chromatography mass spectroscopy (LC/MS/MS). A comparative pharmacokinetic study was done on healthy human subjects between the selected microemulsion and the commercial oral tablets. The physico-chemical and spectroscopic methods revealed the presence of water-in-oil and bicontinuous structures. Biophysical assessment demonstrated various stratum corneum (SC) changes. Olmesartan medoxomil was delivered successfully across the skin with flux achieving 3.65μgcm(-2)h(-1). Higher bioavailability compared to commercial oral tablets with a more sustainment behavior was achieved.
Journal of Colloid and Interface Science | 2011
Rania M. Hathout; Samar Mansour; Ahmed S. Geneidi; Nahed D. Mortada
The use of nano-systems such as the microemulsions is considered as an increasingly implemented strategy in order to enhance the percutaneous transport into and across the skin barrier. The determination of the major pathway of penetration and the mechanisms by which these formulations work remains crucial. In this study, laser confocal scanning microscopy was used to visualize the penetration and the distribution of a fluorescently-labelled microemulsion (using 0.1% w/v Nile red) consisting of (%, w/w) 15.4% oleic acid, 30.8% Tween 20, 30.8% Transcutol® and 23% water. The surface images revealed that the microemulsion accumulated preferentially in the intercellular domains of the stratum corneum. Additionally, by analysis of the images taken across the whole stratum corneum (SC), the penetration was found to occur along its whole depth. The latter result was confirmed using tape stripping and the subsequent sensitive analysis using liquid chromatography mass spectroscopy. Dermatopharmacokinetic parameters were obtained for the microemulsion different components. These values proved the breakage of the microemulsion during its penetration across the stratum corneum. Moreover, the mechanisms of penetration enhancement and the micro molecular effects on the skin stratum corneum were investigated using attenuated Fourier transform infra-red spectroscopy. The results revealed the penetration of all the microemulsion components in the stratum corneum and demonstrated the microemulsion interaction with the skin barrier perturbing its architecture structure.
Drug Delivery | 2013
Maha Nasr; Ismail Taha; Rania M. Hathout
Abstract Objective: This study aims at testing the hypothesis that reversed phase evaporation liposomes (REVs) are suitable for systemic delivery of an anti-osteporotic drug (risedronate sodium (RS)) via pulmonary nebulization. Materials and methods: RS REVs were prepared using phospholipids and cholesterol with or without stearylamine, and were characterized for morphology, entrapment efficiency (EE%), in vitro release, particle size and aerosolization behavior from an actively vibrating mesh nebulizer. RS accumulation in rat bones following intra-tracheal administration of the selected formulation was assessed using a radiolabelling-based technique, and histological examination of rat lung tissue was performed to assess its safety. Results: The EE% of RS REVs ranged from 8.8% to 58.96% depending on cholesterol molar ratio, phospholipid type and presence of stearylamine. RS REVs’ particle size ranged from 2.15 to 3.61u2009µm and were spherical and moderately polydisperse. Nebulization of the selected formulation showed an aerosol output of 85%, a fine particle fraction of 70.75% and a predicted alveolar deposition of 30.39%. The amount of radiolabelled RS deposited in rat bones after pulmonary administration was 20%, while being considerably safe on lung tissues. Conclusion: Cationic REVs is a promising carrier for systemic delivery of RS for treatment of bone resorptive diseases.
Journal of Controlled Release | 2012
Rania M. Hathout; Timothy J. Woodman
Microemulsions have successfully proven themselves as useful vehicles for drugs through the different routes of administration because they can confer on drugs greater water solubility and bioavailability. The ability to understand the structural aspects of these important drug delivery systems is essential to the progress of this science. The use of NMR techniques in pharmaceutical and drug delivery science is increasing especially in the characterization field. This review demonstrates the major and novel NMR methods and techniques used in understanding and characterizing the different microemulsion components, types and structures.