Khanom Simarani
University of Malaya
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Khanom Simarani.
Bioenergy Research | 2016
Mushafau Adebayo Oke; Mohamad Suffian Mohamad Annuar; Khanom Simarani
Lignocellulosic ethanol is a promising alternative to fossil-derived fuels because lignocellulosic biomass is abundant, cheap and its use is environmentally friendly. However, the high costs of feedstock supply and the expensive processing requirements of lignocellulosic biomass hinder the development of the lignocellulosic biorefinery. Lignocellulosic ethanol production so far, has been based mainly on single feedstocks while the use of mixed feedstocks has been poorly explored. Previous studies from alternative applications of mixed lignocellulosic biomass (MLB) have shown that their use can bring about significant cost savings when compared to single feedstocks. Although laboratory-scale evaluations have demonstrated that mixed feedstocks give comparable or even higher ethanol yields compared to single feedstocks, more empirical studies are needed to establish the possibility of achieving significant cost savings in terms of pre-biorefinery logistics. In this review, some potential benefits of the use of MLB for ethanol production are highlighted. Some anticipated limitations of this approach have been identified and ways to surmount them have been suggested. The outlook for ethanol production from MLB is promising provided that revolutionary measures are taken to ensure the sustainability of the industry.
Molecules | 2016
Muhammad Azizan Samad; Siti Hajar Hashim; Khanom Simarani; Jamilah Syafawati Yaacob
Phoenix dactylifera or date palm fruits are reported to contain natural compounds that exhibit antioxidant and antibacterial properties. This research aimed to study the effect of fruit chilling at 4 °C for 8 weeks, extract storage at −20 °C for 5 weeks, and extraction solvents (methanol or acetone) on total phenolic content (TPC), antioxidant activity and antibacterial properties of Saudi Arabian P. dactylifera cv Mabroom, Safawi and Ajwa, as well as Iranian P. dactylifera cv Mariami. The storage stability of total anthocyanin content (TAC) was also evaluated, before and after storing the extracts at −20 °C and 4 °C respectively, for 5 weeks. Mariami had the highest TAC (3.18 ± 1.40 mg cyd 3-glu/100 g DW) while Mabroom had the lowest TAC (0.54 ± 0.15 mg cyd 3-glu/100 g DW). The TAC of all extracts increased after storage. The chilling of date palm fruits for 8 weeks prior to solvent extraction elevated the TPC of all date fruit extracts, except for methanolic extracts of Mabroom and Mariami. All IC50 values of all cultivars decreased after the fruit chilling treatment. Methanol was a better solvent compared to acetone for the extraction of phenolic compounds in dates. The TPC of all cultivars extracts decreased after 5 weeks of extract storage. IC50 values of all cultivars extracts increased after extract storage except for the methanolic extracts of Safawi and Ajwa. Different cultivars exhibited different antibacterial properties. Only the methanolic extract of Ajwa exhibited antibacterial activity against all four bacteria tested: Staphylococcus aureus, Bacillus cereus, Serratia marcescens and Escherichia coli. These results could be useful to the nutraceutical and pharmaceutical industries in the development of natural compound-based products.
Journal of The Saudi Pharmaceutical Society | 2016
Farah Wahida Ayob; Khanom Simarani
This paper reported on the various filamentous fungi strains that were isolated from a wild grown Catharanthus roseus. Based on the morphological characteristics and molecular technique through a Polymerase Chain Reaction and DNA sequencing method using internal transcribed spacer (ITS), these fungi had been identified as a Colletotrichum sp., Macrophomina phaseolina, Nigrospora sphaerica and Fusarium solani. The ultrastructures of spores and hyphae were observed under a Scanning Electron Microscope. The hydrolytic enzyme test showed that all strains were positive in secreting cellulase. Colletotrichum sp. and F. solani strains also gave a positive result for amylase while only F. solani was capable to secrete protease. These fungi were putatively classified as endophytic fungi since they produced extracellular enzymes that allow them to penetrate plant cell walls and colonize with symbiotic properties.
Nanomaterials | 2017
Syed Tawab Shah; Wageeh A Yehya; Omer Saad; Khanom Simarani; Zaira Zaman Chowdhury; Abeer A. Alhadi; Lina Al-Ani
In this research, we report the size-controlled synthesis and surface-functionalization of magnetite with the natural antioxidant gallic acid (GA) as a ligand, using in situ and post-synthesis methods. GA functionalization provided narrow size distribution, with an average particle size of 5 and 8 nm for in situ synthesis of gallic acid functionalized magnetite IONP@GA1 and IONP@GA2, respectively, which are ultra-small particles as compared to unfunctionalized magnetite (IONP) and post functionalized magnetite IONP@GA3 with average size of 10 and 11 nm respectively. All the IONPs@GA samples were found hydrophilic with stable aggregation state. Prior to commencement of experimental lab work, PASS software was used to predict the biological activities of GA and it is found that experimental antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and antimicrobial studies using well diffusion method are in good agreement with the simulated results. Furthermore, the half maximal inhibitory concentration (IC50) values of DPPH antioxidant assay revealed a 2–4 fold decrease as compared to unfunctionalized IONP. In addition to antioxidant activity, all the three IONP@GA proved outstanding antimicrobial activity while testing on different bacterial and fungal strains. The results collectively indicate the successful fabrication of novel antioxidant, antimicrobial IONP@GA composite, which are magnetically separable, efficient, and low cost, with potential applications in polymers, cosmetics, and biomedical and food industries.
Microbial Biotechnology | 2017
Farah Wahida Ayob; Khanom Simarani; Nurhayati Zainal Abidin; Jamaludin Mohamad
This paper reports on the vinca alkaloid produced by a novel Nigrospora sphaerica isolated from Catharanthus roseus. Through liquid chromatography–mass spectrometry (LCMS), only the crude mycelia extract of this fungus was positive for determination of vinblastine. This vinca alkaloid was then purified by using high‐performance liquid chromatography (HPLC) and tested for cytotoxicity activity using MTT assays. The breast cell line cancer (MDA‐MB 231) was treated with a purified vinblastine which was intracellulary produced by N. sphaerica. The purified vinblastine from extracted leaf of C. roseus was used as a standard comparison. A positive result with a value of half maximal inhibitory concentration (IC50) of > 32 μg ml−1 was observed compared with standard (IC50) of 350 μg ml−1 only. It showed that a vinblastine produced by N. sphaerica has a high cytotoxicity activity even though the concentration of vinblastine produced by this endophytic fungus was only 0.868 μg ml−1.
Ultrasonics Sonochemistry | 2017
H.M. Saleh; Mohamad Suffian Mohamad Annuar; Khanom Simarani
Degradation of xanthan polymer in aqueous solution by ultrasonic irradiation was investigated. The effects of selected variables i.e. sonication intensity, irradiation time, concentration of xanthan gum and molar concentration of NaCl in solution were studied. Combined approach of full factorial design and conventional one-factor-at-a-time was applied to obtain optimum degradation at sonication power intensity of 11.5Wcm-2, irradiation time 120min and 0.1gL-1 xanthan in a salt-free solution. Molecular weight reduction of xanthan gum under sonication was described by an exponential decay function with higher rate constant for polymer degradation in the salt free solution. The limiting molecular weight where fragments no longer undergo scission was determined from the function. The incorporation of NaCl in xanthan solution resulted in a lower limiting molecular weight. The ultrasound-mediated degradation of aqueous xanthan polymer chain agreed with a random scission model. Side chain of xanthan polymer is proposed to be the primary site of scission action.
Science of The Total Environment | 2018
Mohamad Yusof Zainun; Khanom Simarani
The municipal landfill is an example of human-made environment that harbours some complex diversity of microorganism communities. To evaluate this complexity, the structures of bacterial communities in active (operational) and closed (non-operational) landfills in Malaysia were analysed with culture independent metagenomics approaches. Several points of soil samples were collected from 0 to 20cm depth and were subjected to physicochemical test, such as temperature, pH, and moisture content. In addition, the heavy metal contamination was determined by using ICPMS. The bacterial enumeration was examined on nutrient agar (NA) plates aerobically at 30°C. The soil DNA was extracted, purified and amplified prior to sequence the 16S rRNA gene for statistical and bioinformatics analyses. As a result, the average of bacteria for the closed landfill was higher compared to that for the active landfill at 9.16×107 and 1.50×107, respectively. The higher bacterial OTUs sequenced was also recorded in closed landfills compared to active landfill i.e. 6625 and 4552 OTUs respectively. The data from both landfills showed that the predominant phyla belonged to Proteobacteria (55.7%). On average, Bacteroidetes was the second highest phylum followed by Firmicutes for the active landfill. While the phyla for communities in closed landfill were dominated by phyla from Acidobacteria and Actinobacteria. There was also Euryarchaeota (Archaea) which became a minor phylum that was detected in active landfill, but almost completely absent in closed landfill. As such, the composition of bacterial communities suggests some variances between the bacterial communities found in active and closed landfills. Thus, this study offers new clues pertaining to bacterial diversity pattern between the varied types of landfills studied.
Biotechnology and Applied Biochemistry | 2018
Siti Nor Syairah Anis; Mohd Suffian Mohd Annuar; Khanom Simarani
Biosynthesis and in vivo depolymerization of intracellular medium‐chain‐length poly‐3‐hydroxyalkanoates (mcl‐PHA) in Pseudomonas putida Bet001 grown on lauric acid were studied. Highest mcl‐PHA fraction (>50 % of total biomass) and cell concentration (8 g L−1) were obtained at carbon‐to‐nitrogen (C/N) ratio 20, starting cell concentration 1 g L−1, and 48 H fermentation. The mcl‐PHA comprised of 3‐hydroxyhexanoate (C6), 3‐hydroxyoctanote (C8), 3‐hydroxydecanoate (C10), and 3‐hydroxydodecanoate (C12) monomers. In vivo action was studied in a mineral liquid medium without carbon source, and in different buffer solutions with varied pH, molarity, ionic strength, and temperature. The monomer liberation rate reflected the mol percentage distribution of the initial polymer subunit composition. Rate and percentage of in vivo depolymerization were highest in 0.2 M Tris–HCl buffer (pH 9, strength = 0.2 M, 30 °C) at 0.21 g L−1 H−1 and 98.6 ± 1.3 wt%, respectively. There is a congruity vis‐à‐vis to specific buffer type, molarity, pH, ionic strength, and temperature values for superior in vivo depolymerization activities. Direct products from in vivo depolymerization matched the individual monomeric composition of native mcl‐PHA. It points to exo‐type reaction for the in vivo process, and potential biological route to chiral molecules.
Archives of Agronomy and Soil Science | 2018
Khanom Simarani; Muhammad Farid Azlan Halmi; Rosazlin Binti Abdullah
ABSTRACT Biochar is known to ameliorate soil fertility and improve crop production but information regarding soil microbiota responses on biochar amendment remains limited. The experiment was conducted to study the effect of biochars from palm kernel (pyrolysed at 400°C) and rice husk (gasified at 800°C) in a sandy loam Acrisol from Peninsular Malaysia. The soil was amended with palm kernel shell biochar (PK), rice husk biochar (RH), palm kernel biochar with fertilizer (FPK), rice husk biochar with fertilizer (FRH), fertilizer and control soil. Soil samples were taken during maize harvesting and were analysed for physico-chemical properties, microbial biomass, microbial abundance and microbial diversity. Increase in pH, moisture content, CEC, organic C, and labile C were recorded in all biochar amended soils. Microbial biomass C was 65% and 36% higher in RH and FRH, respectively, than control. Microbial biomass N was greatest in FPK and FRH with respective increment of 359% and 341% than control. β-glucosidase and xylanase activities were significantly increased in all biochar treated soils than control. A shift in microbial diversity was not detected. The biochar affects the microbial community by altering the soil environment and increasing labile active carbon sources in the short-term amendment.
Preparative Biochemistry & Biotechnology | 2017
Siti Nor Syairah Anis; Mohamad Suffian Mohamad Annuar; Khanom Simarani
ABSTRACT In vivo and in vitro depolymerizations of intracellular medium-chain-length poly-3-hydroxyalkanoates (mcl-PHA) in Pseudomonas putida Bet001 grown on lauric acid was studied. Both processes were studied under optimum conditions for mcl-PHA depolymerization viz. 0.2 M Tris-HCl buffer, pH 9, ionic strength (I) = 0.2 M at 30°C. For in vitro depolymerization studies, cell-free system was obtained from lysing bacterial cells suspension by ultrasonication at optimum conditions (frequency 37 kHz, 30% of power output, <25°C for 120 min). The comparison between in vivo and in vitro depolymerizations of intracellular mcl-PHA was made. In vitro depolymerization showed lower depolymerization rate but higher yield compared to in vivo depolymerization. The monomer liberation rate reflected the mol% distribution of the initial polymer subunit composition, and the resulting direct individual products of depolymerization were identical for both in vivo and in vitro processes. It points to exo-type reaction for both processes, and potential biological route to chiral molecules.