Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohamad Suffian Mohamad Annuar is active.

Publication


Featured researches published by Mohamad Suffian Mohamad Annuar.


PLOS ONE | 2012

Biosynthesis and Characterization of Polyhydroxyalkanoates Copolymers Produced by Pseudomonas putida Bet001 Isolated from Palm Oil Mill Effluent

A.M. Gumel; Mohamad Suffian Mohamad Annuar; Thorsten Heidelberg

The biosynthesis and characterization of medium chain length poly-3-hydroxyalkanoates (mcl-PHA) produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. The biosynthesis of mcl-PHA in this newly isolated microorganism follows a growth-associated trend. Mcl-PHA accumulation ranging from 49.7 to 68.9% on cell dry weight (CDW) basis were observed when fatty acids ranging from octanoic acid (C8∶0) to oleic acid (C18∶1) were used as sole carbon and energy source. Molecular weight of the polymer was found to be ranging from 55.7 to 77.7 kDa. Depending on the type of fatty acid used, the 1H NMR and GCMSMS analyses of the chiral polymer showed a composition of even and odd carbon atom chain with monomer length of C4 to C14 with C8 and C10 as the principal monomers. No unsaturated monomer was detected. Thermo-chemical analyses showed the accumulated PHA to be semi-crystalline polymer with good thermal stability, having a thermal degradation temperature (T d) of 264.6 to 318.8 (±0.2) oC, melting temperature (T m) of 43. (±0.2) oC, glass transition temperature (T g) of −1.0 (±0.2) oC and apparent melting enthalpy of fusion (ΔH f) of 100.9 (±0.1) J g−1.


Ultrasonics Sonochemistry | 2012

Ultrasound assisted lipase catalyzed synthesis of poly-6-hydroxyhexanoate

A.M. Gumel; Mohamad Suffian Mohamad Annuar; Yusuf Chisti; Thorsten Heidelberg

Ultrasonic irradiation greatly improved the Candida antarctica lipase B mediated ring opening polymerization of ε-caprolactone to poly-6-hydroxyhexanoate in the ionic liquid 1-ethyl-3-methylimidazolium tetraflouroborate. Compared to the conventional nonsonicated reaction, sonication improved the monomer conversion by 63% and afforded a polymer product of a narrower molecular weight distribution and a higher degree of crystallinity. Under sonication, the polydispersity index of the product was ~1.44 compared to a value of ~2.55 for the product of the conventional reaction. With sonication, nearly 75% of the monomer was converted to product, but the conversion was only ~16% for the reaction carried out conventionally. Compared to conventional operation, sonication enhanced the rate of polymer propagation by >2-fold and the turnover number of the lipase by >3-fold.


Bioresource Technology | 2011

Thermo-kinetics of lipase-catalyzed synthesis of 6-O-glucosyldecanoate.

A.M. Gumel; Mohamad Suffian Mohamad Annuar; Thorsten Heidelberg; Yusuf Chisti

Lipase-catalyzed synthesis of 6-O-glucosyldecanoate from d-glucose and decanoic acid was performed in dimethyl sulfoxide (DMSO), a mixture of DMSO and tert-butanol and tert-butanol alone with a decreasing order of polarity. The highest conversion yield (> 65%) of decanoic acid was obtained in the blended solvent of intermediate polarity mainly because it could dissolve relatively large amounts of both the reactants. The reaction obeyed Michaelis-Menten type of kinetics. The affinity of the enzyme towards the limiting substrate (decanoic acid) was not affected by the polarity of the solvent, but increased significantly with temperature. The esterification reaction was endothermic with activation energy in the range of 60-67 kJ mol⁻¹. Based on the Gibbs energy values, in the solvent blend of DMSO and tert-butanol the position of the equilibrium was shifted more towards the products compared to the position in pure solvents. Monoester of glucose was the main product of the reaction.


Brazilian Journal of Chemical Engineering | 2008

A kinetic model for growth and biosynthesis of medium-chain-length poly-(3-hydroxyalkanoates) in Pseudomonas putida

Mohamad Suffian Mohamad Annuar; Irene Kit Ping Tan; Shaliza Ibrahim

A kinetic model is presented giving a mathematical description of batch culture of Pseudomonas putida PGA1 grown using saponified palm kernel oil as carbon source and ammonium as the limiting nutrient. The growth of the micro-organism is well-described using Tessier-type model which takes into account the inhibitory effect of ammonium at high concentrations. The ammonium consumption rate by the cells is related in proportion to the rate of growth. The intracellular production of medium-chain-length poly-(3-hydroxyalkanoates) (PHAMCL) by P. putida PGA1 cells is reasonably modeled by the modified Luedeking-Piret kinetics, which incorporate a function of product synthesis inhibition (or reduction) by ammonium above a threshold level.


Ultrasonics Sonochemistry | 2013

Lipase catalyzed ultrasonic synthesis of poly-4-hydroxybutyrate-co-6-hydroxyhexanoate

A.M. Gumel; Mohamad Suffian Mohamad Annuar; Yusuf Chisti

Four different lipases were compared for ultrasound-mediated synthesis of the biodegradable copolymer poly-4-hydroxybutyrate-co-6-hydroxyhexanoate. The copolymerization was carried out in chloroform. Of the enzymes tested, Novozym 435 exhibited the highest copolymerization rate, in fact the reaction rate was observed to increase with about 26-fold from 30 to 50°C (7.9×10(-3)Ms(-1)), sonic power intensity of 2.6×10(3)Wm(-2) and dissipated energy of 130.4Jml(-1). Copolymerization rates with the Candida antarctica lipase A, Candida rugosa lipase, and Lecitase Ultra™ were lower at 2.4×10(-4), 1.3×10(-4) and 3.5×10(-4)Ms(-1), respectively. The catalytic efficiency depended on the enzyme. The efficiency ranged from 4.15×10(-3)s(-1)M(-1) for Novozym 435-1.48×10(-3)s(-1)M(-1) for C. rugosa lipase. Depending on the enzyme and sonication intensity, the monomer conversion ranged from 8.2% to 48.5%. The sonication power, time and temperature were found to affect the rate of copolymerization. Increasing sonication power intensity from 1.9×10(3) to 4.5×10(3)Wm(-2) resulted in an increased in acoustic pressure (P(a)) from 3.7×10(8) to 5.7×10(8)Nm(-2) almost 2.4-3.7 times greater than the acoustic pressure (1.5×10(8)Nm(-2)) that is required to cause cavitation in water. A corresponding acoustic particle acceleration (a) of 9.6×10(3)-1.5×10(4)ms(-2) was calculated i.e. approximately 984-1500 times greater than under the action of gravity.


Bioprocess and Biosystems Engineering | 2013

High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer

M. N. I. Salehmin; Mohamad Suffian Mohamad Annuar; Yusuf Chisti

This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.


Journal of Bioscience and Bioengineering | 2015

Direct recovery of cyclodextringlycosyltransferase from Bacillus cereus using aqueous two-phase flotation

Yu Kiat Lin; Pau Loke Show; Yee Jiun Yap; Chin Ping Tan; Eng-Poh Ng; Arbakariya Ariff; Mohamad Suffian Mohamad Annuar; Tau Chuan Ling

Purification of cyclodextrin glycosyl transferase (CGTase) from Bacillus cereus using polyethylene glycol (PEG)-potassium phosphates aqueous two-phase flotation (ATPF) system was studied in this paper. The effects of varying PEG molecular weight, tie-line length (TLL) value, volume ratio (VR), pH value, crude concentration and gas nitrogen flotation time were investigated. The optimal condition for purification of CGTase was attained at 18.0% (w/w) PEG 8000, 7.0% (w/w) potassium phosphates, VR of 3.0, 20% (w/w) crude load at pH 7, and 80 min nitrogen flotation time at a flow rate of 5 L/min. With this optimal condition, purification factor (PFT) of 21.8 and a yield (YT) of 97.1% were attained. CGTase was successfully purified in a single downstream processing step using the ATPF.


Evidence-based Complementary and Alternative Medicine | 2015

Effects of Selected Physicochemical Parameters on Zerumbone Production of Zingiber zerumbet Smith Cell Suspension Culture

Mahanom Jalil; Mohamad Suffian Mohamad Annuar; Boon Chin Tan; Norzulaani Khalid

Zingiber zerumbet Smith is an important herb that contains bioactive phytomedicinal compound, zerumbone. To enhance cell growth and production of this useful compound, we investigated the growth conditions of cell suspension culture. Embryogenic callus generated from shoot bud was used to initiate cell suspension culture. The highest specific growth rate of cells was recorded when it was cultured in liquid Murashige and Skoog basal medium containing 3% sucrose with pH 5.7 and incubated under continuous shaking condition of 70 rpm for 16 h light and 8 h dark cycle at 24°C. Our results also revealed that the type of carbohydrate substrate, light regime, agitation speed, and incubation temperature could affect the production of zerumbone. Although the zerumbone produced in this study was not abundant compared to rhizome of Z. zerumbet, the possibility of producing zerumbone during early stage could serve as a model for subsequent improvement.


Brazilian Journal of Microbiology | 2014

Growth kinetics, effect of carbon substrate in biosynthesis of mcl-PHA by Pseudomonas putida Bet001.

A.M. Gumel; Mohamad Suffian Mohamad Annuar; Thorsten Heidelberg

Growth associated biosynthesis of medium chain length poly-3-hydroxyalkanoates (mcl-PHA) in Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. Models with substrate inhibition terms described well the kinetics of its growth. Selected fatty acids (C8:0 to C18:1) and ammonium were used as carbon and nitrogen sources during growth and PHA biosynthesis, resulting in PHA accumulation of about 50 to 69% (w/w) and PHA yields ranging from 10.12 g L−1 to 15.45 g L−1, respectively. The monomer composition of the PHA ranges from C4 to C14, and was strongly influenced by the type of carbon substrate fed. Interestingly, an odd carbon chain length (C7) monomer was also detected when C18:1 was fed. Polymer showed melting temperature (Tm) of 42.0 (± 0.2) °C, glass transition temperature (Tg) of −1.0 (± 0.2) °C and endothermic melting enthalpy of fusion (ΔHf) of 110.3 (± 0.1) J g−1. The molecular weight (Mw) range of the polymer was relatively narrow between 55 to 77 kDa.


International Journal of Biological Macromolecules | 2013

Enzymatic synthesis of 6-O-glucosyl-poly(3-hydroxyalkanoate) in organic solvents and their binary mixture

A.M. Gumel; Mohamad Suffian Mohamad Annuar; Thorsten Heidelberg

The effects of organic solvents and their binary mixture in the glucose functionalization of bacterial poly-3-hydroxyalkanoates catalyzed by Lecitase™ Ultra were studied. Equal volume binary mixture of DMSO and chloroform with moderate polarity was more effective for the enzyme catalyzed synthesis of the carbohydrate polymer at ≈38.2 (±0.8)% reactant conversion as compared to the mono-phasic and other binary solvents studied. The apparent reaction rate constant as a function of medium water activity (aw) was observed to increase with increasing solvent polarity, with optimum aw of 0.2, 0.4 and 0.7 (±0.1) observed in hydrophilic DMSO, binary mixture DMSO:isooctane and hydrophobic isooctane, respectively. Molecular sieve loading between 13 to 15gL(-1) (±0.2) and reaction temperature between 40 to 50°C were found optimal. Functionalized PHA polymer showed potential characteristics and biodegradability.

Collaboration


Dive into the Mohamad Suffian Mohamad Annuar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pau Loke Show

University of Nottingham Malaysia Campus

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge