Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Khristofor Agassandian is active.

Publication


Featured researches published by Khristofor Agassandian.


Nature Medicine | 2010

Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance

Miguel López; Luis M. Varela; María J. Vázquez; Sergio Rodriguez-Cuenca; Cr Gonzalez; Vidya Velagapudi; Donald A. Morgan; Erik Schoenmakers; Khristofor Agassandian; Ricardo Lage; Pablo B. Martínez de Morentin; Sulay Tovar; Ruben Nogueiras; David Carling; Christopher J. Lelliott; Rosalía Gallego; Matej Orešič; Krishna Chatterjee; Asish K. Saha; Kamal Rahmouni; Carlos Dieguez; Antonio Vidal-Puig

Thyroid hormones have widespread cellular effects; however it is unclear whether their effects on the central nervous system (CNS) contribute to global energy balance. Here we demonstrate that either whole-body hyperthyroidism or central administration of triiodothyronine (T3) decreases the activity of hypothalamic AMP-activated protein kinase (AMPK), increases sympathetic nervous system (SNS) activity and upregulates thermogenic markers in brown adipose tissue (BAT). Inhibition of the lipogenic pathway in the ventromedial nucleus of the hypothalamus (VMH) prevents CNS-mediated activation of BAT by thyroid hormone and reverses the weight loss associated with hyperthyroidism. Similarly, inhibition of thyroid hormone receptors in the VMH reverses the weight loss associated with hyperthyroidism. This regulatory mechanism depends on AMPK inactivation, as genetic inhibition of this enzyme in the VMH of euthyroid rats induces feeding-independent weight loss and increases expression of thermogenic markers in BAT. These effects are reversed by pharmacological blockade of the SNS. Thus, thyroid hormone–induced modulation of AMPK activity and lipid metabolism in the hypothalamus is a major regulator of whole-body energy homeostasis.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A knockin mouse model of the Bardet–Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity

Roger E. Davis; Ruth E. Swiderski; Kamal Rahmouni; Darryl Y. Nishimura; Robert F. Mullins; Khristofor Agassandian; Alisdair R. Philp; Charles Searby; Michael P. Andrews; Stewart Thompson; Christopher J. Berry; Daniel R. Thedens; Baoli Yang; Robert M. Weiss; Martin D. Cassell; Edwin M. Stone; Val C. Sheffield

Bardet–Biedl syndrome (BBS) is a genetically heterogeneous disorder that results in retinal degeneration, obesity, cognitive impairment, polydactyly, renal abnormalities, and hypogenitalism. Of the 12 known BBS genes, BBS1 is the most commonly mutated, and a single missense mutation (M390R) accounts for ≈80% of BBS1 cases. To gain insight into the function of BBS1, we generated a Bbs1M390R/M390R knockin mouse model. Mice homozygous for the M390R mutation recapitulated aspects of the human phenotype, including retinal degeneration, male infertility, and obesity. The obese mutant mice were hyperphagic and hyperleptinemic and exhibited reduced locomotor activity but no elevation in mean arterial blood pressure. Morphological evaluation of Bbs1 mutant brain neuroanatomy revealed ventriculomegaly of the lateral and third ventricles, thinning of the cerebral cortex, and reduced volume of the corpus striatum and hippocampus. Similar abnormalities were also observed in the brains of Bbs2−/−, Bbs4−/−, and Bbs6−/− mice, establishing these neuroanatomical defects as a previously undescribed BBS mouse model phenotype. Ultrastructural examination of the ependymal cell cilia that line the enlarged third ventricle of the Bbs1 mutant brains showed that, whereas the 9 + 2 arrangement of axonemal microtubules was intact, elongated cilia and cilia with abnormally swollen distal ends were present. Together with data from transmission electron microscopy analysis of photoreceptor cell connecting cilia, the Bbs1 M390R mutation does not affect axonemal structure, but it may play a role in the regulation of cilia assembly and/or function.


Journal of Clinical Investigation | 2007

Local production of angiotensin II in the subfornical organ causes elevated drinking

Koji Sakai; Khristofor Agassandian; Satoshi Morimoto; Puspha Sinnayah; Martin D. Cassell; Robin L. Davisson; Curt D. Sigmund

The mechanism controlling cell-specific Ang II production in the brain remains unclear despite evidence supporting neuron-specific renin and glial- and neuronal-specific angiotensinogen (AGT) expression. We generated double-transgenic mice expressing human renin (hREN) from a neuron-specific promoter and human AGT (hAGT) from its own promoter (SRA mice) to emulate this expression. SRA mice exhibited an increase in water and salt intake and urinary volume, which were significantly reduced after chronic intracerebroventricular delivery of losartan. Ang II-like immunoreactivity was markedly increased in the subfornical organ (SFO). To further evaluate the physiological importance of de novo Ang II production specifically in the SFO, we utilized a transgenic mouse model expressing a floxed version of hAGT (hAGT(flox)), so that deletions could be induced with Cre recombinase. We targeted SFO-specific ablation of hAGT(flox) by microinjection of an adenovirus encoding Cre recombinase (AdCre). SRA(flox) mice exhibited a marked increase in drinking at baseline and a significant decrease in water intake after administration of AdCre/adenovirus encoding enhanced GFP (AdCre/AdEGFP), but not after administration of AdEGFP alone. This decrease only occurred when Cre recombinase correctly targeted the SFO and correlated with a loss of hAGT and angiotensin peptide immunostaining in the SFO. These data provide strong genetic evidence implicating de novo synthesis of Ang II in the SFO as an integral player in fluid homeostasis.


Circulation Research | 2011

Ablation of the Leptin Receptor in the Hypothalamic Arcuate Nucleus Abrogates Leptin-Induced Sympathetic Activation

Shannon M. Harlan; Donald A. Morgan; Khristofor Agassandian; Deng-Fu Guo; Martin D. Cassell; Curt D. Sigmund; Allyn L. Mark; Kamal Rahmouni

Rationale: The hypothalamic arcuate nucleus (ARC) is considered a major site for leptin signaling that regulates several physiological processes. Objective: To test the hypothesis that leptin receptor in the ARC is required to mediate leptin-induced sympathetic activation. Methods and Results: First, we used the ROSA Cre-reporter mice to establish the feasibility of driving Cre expression in the ARC in a controlled manner with bilateral microinjection of adenovirus-expressing Cre-recombinase (Ad-Cre). Ad-Cre microinjection into the ARC of ObRflox/flox mice robustly reduced ObR expression and leptin-induced Stat3 activation in the ARC but not in the adjacent nuclei, confirming the efficacy and selectivity of the ARC deletion of ObR. Critically, deletion of ObR in the ARC attenuated brown adipose tissue and renal sympathetic nerve responses to leptin. We also examined whether ObR in the ARC is required for the preserved leptin-induced increase in renal sympathetic activity in dietary obesity. We found that deletion of ARC ObR abrogated leptin-induced increases in renal sympathetic discharge and resolved arterial pressure elevation in diet-induced obese ObRflox/flox mice. Conclusions: These data demonstrate a critical role for ObR in the ARC in mediating the sympathetic nerve responses to leptin and in the adverse sympathoexcitatory effects of leptin in obesity.


Hypertension | 2009

Leptin Signaling in the Nucleus Tractus Solitarii Increases Sympathetic Nerve Activity to the Kidney

Allyn L. Mark; Khristofor Agassandian; Donald A. Morgan; Xuebo Liu; Martin D. Cassell; Kamal Rahmouni

The hypothalamic arcuate nucleus was initially regarded as the principal site of leptin action, but there is increasing evidence for functional leptin receptors in extrahypothalamic sites, including the nucleus tractus solitarii (NTS). We demonstrated previously that arcuate injection of leptin increases sympathetic nerve activity (SNA) to brown adipose tissue and kidney. In this study, we tested the hypothesis that leptin signaling in the NTS affects sympathetic neural outflow. Using a stereotaxic device in anesthetized rats, we microinjected leptin (0.25 to 1.00 &mgr;g) or saline into the NTS while recording SNA to kidney and brown adipose tissue. Microinjection of leptin into the commissural and medial subnuclei of the caudal NTS at the level of the area postrema in Sprague-Dawley rats produced a dose-related increase in renal SNA (+112±15% with leptin 1 &mgr;g; n=7; P<0.001) but did not increase SNA to brown adipose tissue (−15±12%; P value not significant). This effect depended on intact functional leptin receptors, because it was not observed in Zucker obese rats that have a missense mutation in the leptin receptor. Rostral NTS injection of leptin failed to increase SNA, indicating that leptin signaling in the NTS is probably confined to the caudal NTS at the level of the area postrema. In summary, this study demonstrates that leptin signaling in the caudal NTS increases SNA to the kidney but not to the brown adipose tissue. The study strengthens the concept of a distributed brain network of leptin action and demonstrates that these distributed brain sites can mediate contrasting sympathetic responses to leptin.


The Journal of Comparative Neurology | 2002

Direct projections from the cardiovascular nucleus tractus solitarii to pontine preganglionic parasympathetic neurons: A link to cerebrovascular regulation

Khristofor Agassandian; Valéria Paula Sassoli Fazan; Valentina Adanina; William T. Talman

Peripheral or central interruption of the baroreflex or the parasympathetic innervation of cerebral vessels leads to similar changes in regulation of cerebral blood flow. Therefore, we sought to test the hypothesis that the cardiovascular nucleus tractus solitarii, the site of termination of arterial baroreceptor nerves, projects to pontine preganglionic neurons whose stimulation elicits cerebral vasodilatation. The current study utilized both light and electron microscopic techniques to analyze anterograde tracing from the cardiovascular nucleus tractus solitarii to preganglionic parasympathetic neurons in the pons. We further used retrograde tracing from that same pontine region to the cardiovascular nucleus tractus solitarii and evaluated the confluence of tracing from the cardiovascular nucleus tractus solitarii to pontine preganglionic neurons labeled retrogradely from the pterygopalatine ganglia. The cardiovascular nucleus tractus solitarii projected to pontine preganglionic parasympathetic neurons, but more rostral and caudal regions of nucleus tractus solitarii did not. In contrast, all three regions of nucleus tractus solitarii projected to the nucleus ambiguus and dorsal motor nucleus of the vagus. Although not projecting to pontine preganglionic parasympathetic neurons, regions lateral, rostral, and caudal to cardiovascular nucleus tractus solitarii sent projections through the pons medial to the preganglionics. The study establishes the presence of a direct monosynaptic pathway from neurons in the cardiovascular nucleus tractus solitarii to pontine preganglionic parasympathetic neurons that project to the pterygopalatine ganglia, the source of nitroxidergic vasodilatory innervation of cerebral blood vessels. It provides evidence that activation of those preganglionic neurons can cause cerebral vasodilatation and increased cerebral blood flow. Finally, it demonstrates differential innervation of medullary and pontine preganglionic parasympathetic neurons by different regions of the nucleus tractus solitarii. J. Comp. Neurol. 452:242–254, 2002.


Cellular and Molecular Neurobiology | 2003

A Novel Central Pathway Links Arterial Baroreceptors and Pontine Parasympathetic Neurons in Cerebrovascular Control

Khristofor Agassandian; Valéria Paula Sassoli Fazan; Naira Margaryan; Deidre Nitschke Dragon; Jeffrey Riley; William T. Talman

Abstract1. We tested the hypothesis that arterial baroreceptor reflexes modulate cerebrovascular tone through a pathway that connects the cardiovascular nucleus tractus solitarii with parasympathetic preganglionic neurons in the pons.2. Anesthetized rats were used in all studies. Laser flowmetry was used to measure cerebral blood flow. We assessed cerebrovascular responses to increases in arterial blood pressure in animals with lesions of baroreceptor nerves, the nucleus tractus solitarii itself, the pontine preganglionic parasympathetic neurons, or the parasympathetic ganglionic nerves to the cerebral vessels. Similar assessments were made in animals after blockade of synthesis of nitric oxide, which is released by the parasympathetic nerves from the pterygopalatine ganglia. Finally the effects on cerebral blood flow of glutamate stimulation of pontine preganglionic parasympathetic neurons were evaluated.3. We found that lesions at any one of the sites in the putative pathway or interruption of nitric oxide synthesis led to prolongation of autoregulation as mean arterial pressure was increased to levels as high as 200 mmHg. Conversely, stimulation of pontine parasympathetic preganglionic neurons led to cerebral vasodilatation. The second series of studies utilized classic anatomical tracing methods to determine at the light and electron microscopic level whether neurons in the cardiovascular nucleus tractus solitarii, the site of termination of baroreceptor afferents, projected to the pontine preganglionic neurons. Fibers were traced with anterograde tracer from the nucleus tractus solitarii to the pons and with retrograde tracer from the pons to the nucleus tractus solitarii. Using double labeling techniques we further studied synapses made between labeled projections from the nucleus tractus solitarii and preganglionic neurons that were themselves labeled with retrograde tracer placed into the pterygopalatine ganglion.4. These anatomical studies showed that the nucleus tractus solitarii directly projects to pontine preganglionic neurons and makes asymmetric, seemingly excitatory, synapses with those neurons. These studies provide strong evidence that arterial baroreceptors may modulate cerebral blood flow through direct connections with pontine parasympathetic neurons. Further study is needed to clarify the role this pathway plays in integrative physiology.


Physiological Genomics | 2011

Neuron- or glial-specific ablation of secreted renin does not affect renal renin, baseline arterial pressure, or metabolism

Di Xu; Giulianna R. Borges; Deborah R. Davis; Khristofor Agassandian; Maria Luisa S. Sequeira Lopez; R. Ariel Gomez; Martin D. Cassell; Justin L. Grobe; Curt D. Sigmund

The renin-angiotensin system (RAS), known for its roles in cardiovascular, metabolic, and developmental regulation, is present in both the circulation and in many individual tissues throughout the body. Substantial evidence supports the existence of a brain RAS, though quantification and localization of brain renin have been hampered by its low expression levels. We and others have previously determined that there are two isoforms of renin expressed in the brain. The classical isoform encoding secreted renin (sREN) and a novel isoform encoding intracellular renin (icREN), the product of an alternative promoter and first exon (exon 1b). The differential role that these two isoforms play in cardiovascular and metabolic regulation remains unclear. Here we examined the physiological consequences of neuron- and glia-specific knockouts of sREN by crossing mice in which the sREN promoter and isoform-specific first exon (exon-1a) is flanked by LoxP sequences (sREN(flox) mice) with mice expressing Cre-recombinase controlled by either the neuron-specific Nestin promoter or the glia-specific GFAP promoter. Resulting offspring exhibited selective knockout of sREN in either neurons or glia, while preserving expression of icREN. Consistent with a hypothesized role of icREN in the brain RAS, neuron- and glia-specific knockout of sREN had no effect on blood pressure or heart rate; food, water, or sodium intake; renal function; or metabolic rate. These data demonstrate that sREN is dispensable within the brain for normal physiological regulation of cardiovascular, hydromineral, and metabolic regulation, and thereby indirectly support the importance of icREN in brain RAS function.


Brain Research | 2006

Neurotrophic factors in the central nucleus of amygdala may be organized to provide substrates for associative learning

Khristofor Agassandian; Matthew Gedney; Martin D. Cassell

The central nucleus of amygdala was examined to identify the ultrastructural distribution of neurotrophins responsible for the complex of neuronal signaling processes which regulate synaptic transmission and neuronal plasticity, and possibly underlie memory formation. We investigated at the electron microscopic level the cellular organization of brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine kinase receptor B (TrkB), in the extended amygdala (CE). We also investigated the interaction between cortical inputs to CE and BDNF and TrkB. Our results indicate the presence of pro-BDNF and BDNF in terminals in the CE which show a strong association with immunoreactive postsynaptic densities. TrkB receptor immunoreactivity was localized to postsynaptic densities of asymmetric synapses on dendrites and dendritic spines. Cortical terminals formed asymmetric synapses with dendritic shafts and spines, but were not BDNF immunoreactive. TrkB receptors were observed opposed to cortical terminals. These data also suggest that one potential substrate for associative learning may be the interaction of different cortical inputs with neurotrophin-containing terminals ending on dendritic spines and other neuronal structures of CE.


Brain Research | 2009

Characterization of transgenic mice with neuron-specific expression of soluble epoxide hydrolase

Robert A. Bianco; Khristofor Agassandian; Martin D. Cassell; Arthur A. Spector; Curt D. Sigmund

Soluble epoxide hydrolase (sEH) is the major enzyme responsible for the metabolism and inactivation of epoxyeicosatrienoic acids (EETs). EETs are produced by the cytochrome P450 (CYP) epoxygenase pathway of arachidonic acid (AA) metabolism and tend to be anti-hypertensive, anti-inflammatory and protective against ischemic injury. Since the metabolism of EETs by sEH reduces or eliminates their bioactivity, inhibition of sEH has become a therapeutic strategy for hypertension and inflammation. sEH is found in nearly all tissues so the systemic application of inhibitors is likely to affect more than blood pressure and inflammation. In the central nervous system, EETs are thought to play a role in the regulation of local blood flow, protection from ischemic injury, inhibition of inflammation, the release of peptide hormones and modulation of fever. However, little is known about region- and cell-specific expression of sEH in the brain. In the mouse brain, expression of sEH was found widely in cortical and hippocampal astrocytes and also in a few specific neuron types in the cortex, cerebellum, and medulla. To assess the functional significance of neuronal sEH, we generated a transgenic mouse model, which over-expresses sEH specifically in neurons. Transgenic mice showed increased neuron labeling in cortex and hippocampus with little change in labeling of other brain regions. Despite a 3-fold increase in sEH activity in the brain, there was no change in arterial pressure. This data provides new information required for studying the central roles of the cytochrome P450 epoxygenase pathway.

Collaboration


Dive into the Khristofor Agassandian's collaboration.

Top Co-Authors

Avatar

Martin D. Cassell

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deborah R. Davis

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Giulianna R. Borges

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge