Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin D. Cassell is active.

Publication


Featured researches published by Martin D. Cassell.


Trends in Neurosciences | 1994

Neurotransmission in the rat amygdala related to fear and anxiety

Michael Davis; Don Rainnie; Martin D. Cassell

An impressive amount of evidence from many different laboratories using a variety of experimental techniques indicates that the amygdala plays a crucial role in the acquisition, consolidation and retention or expression of conditioned fear. Electrophysiological data are beginning to detail the transmitters and inter-amygdala connections that transmit information to, within, and out of the amygdala. In general, treatments that increase the excitability of amygdala output neurons in the basolateral nucleus (for example, by decreasing opiate and GABA transmission, and increasing noradrenergic transmission) improve aversive conditioning, whereas treatments that decrease excitability of these neurons (by increasing opiate and GABA transmission, and decreasing NMDA and noradrenergic transmission) retard aversive conditioning as well as producing anxiolytic effects in appropriate animal tests. A better understanding of brain systems that inhibit the amygdala, as well as the role of its very high levels of peptides, might eventually lead to the development of more effective pharmacological strategies for treating clinical anxiety and memory disorders.


The Journal of Comparative Neurology | 1998

Cortical, thalamic, and amygdaloid connections of the anterior and posterior insular cortices

C.-J. Shi; Martin D. Cassell

Cortical, thalamic, and amygdaloid projections of the rat anterior and posterior insular cortices were examined using the anterograde transport of biocytin. Granular and dysgranular posterior insular areas between bregma and 2 mm anterior to bregma projected to the gustatory thalamic nucleus. Granular cortex projected to the subjacent dysgranular cortex which in turn projected to the agranular (all layers) and granular cortices (layers I and VI). Both granular and dysgranular posterior areas projected heavily to the dysgranular anterior insular cortex. Agranular posterior insular cortex projected to medial mediodorsal nucleus, agranular anterior insular and infralimbic cortices as well as granular and dysgranular posterior insula. No projections to the amygdala were observed from posterior granular cortex, although dysgranular cortex projected to the lateral central nucleus, dorsolateral lateral nucleus, and posterior basolateral nucleus. Agranular projections were similar, although they included medial and lateral central nucleus and the ventral lateral nucleus. Dysgranular anterior insular cortex projected to lateral agranular frontal cortex and granular and dysgranular posterior insular regions. Agranular anterior insular cortex projected to the dysgranular anterior and prelimbic cortices. Anterior insuloamygdaloid projections targeted the rostral lateral and anterior basolateral nuclei with sparse projections to the rostral central nucleus. The data suggest that the anterior insula is an interface between the posterior insular cortex and motor cortex and is connected with motor‐related amygdala regions. Amygdaloid projections from the posterior insular cortex appear to be organized in a feedforward parallel fashion targeting all levels of the intraamygdaloid connections linking the lateral, basolateral, and central nuclei . J. Comp. Neurol. 399:440–468, 1998.


Annals of the New York Academy of Sciences | 1999

The Intrinsic Organization of the Central Extended Amygdala

Martin D. Cassell; Lorin J. Freedman; Changjun Shi

ABSTRACT: The central component of the extended amygdala (CEA) comprises the central amygdaloid nucleus (Ce), the dorsal substantia innominata (SI), and the bed nucleus of the stria terminalis (BNST). Anatomical studies have suggested the presence of an intrinsic system of GABAergic neurons that not only connects homologous subareas of the Ce, SI, and BNST but that also acts as an interface between sensory afferents and brain stem‐projecting neurons. CEA outputs, with a few exceptions, arise from separate populations of neurons, but all, including GABAergic neurons themselves, are heavily innervated by GABAergic terminals. GABAergic neurons may serve to integrate output activity of the CEA, though GABAergic neurons form a heterogeneous population whose differential intrinsic connections appear related to their peptide content. Afferents from the dysgranular insular cortex and lateral parabrachial complex preferentially innervate GABAergic neurons, suggesting these neurons may also integrate afferent activity. Afferents from the basolateral amygdala (BL) appear to innervate both output neurons and intrinsic GABAergic neurons. Evidence will be presented to show that BL afferents form synaptic complexes with cortical, GABAergic, and TH‐immunoreactive terminal boutons on GABAergic dendritic spines. These complexes may be a key element in control of CEA output activity.


The Journal of Comparative Neurology | 1997

Cortical, thalamic, and amygdaloid projections of rat temporal cortex.

C.-J. Shi; Martin D. Cassell

The cortical, thalamic, and amygdaloid connections of the rodent temporal cortices were investigated by using the anterograde transport of iontophoretically injected biocytin. Injections into area Te1 labeled axons and terminals in the ventral regions of the dorsal and ventral subnuclei of the medial geniculate complex, area Te3, the rostrodorsal part of area Te2, and the ventrocaudal caudate putamen. No amygdaloid labeling was observed. Thalamic projections from Te2 targeted the lateral posterior nucleus, the dorsal part of the dorsal subnucleus of the medial geniculate complex, and the peripeduncular nucleus. Corticocortical projections mainly terminated in the dorsal perirhinal cortex, but moderately dense projections were observed in medial and lateral peristriate cortex, and only light projections were observed to Te1 and Te3. Projections to these isocortical regions terminated in layers I and VI. Amygdaloid projections targeted the ventromedial subdivision of the lateral nucleus and the adjacent part of the anterior basolateral nucleus. Area Te3 was observed to project to the ventrolateral parts of the dorsal and ventral subnuclei of the medial geniculate complex, the dorsal perirhinal cortex, rostral Te2, and Te1. In the amygdala, labeled fibers and terminals were concentrated in the dorsolateral subdivision of the lateral nucleus. These data confirm that areas Te1 and Te3 are hierarchically organized cortical areas connected with auditory relay nuclei in the thalamus. Area Te2, in contrast, appears to be weakly connected with Te1 and Te3 but is heavily connected with the peristriate cortex and tectorecipient thalamic nuclei. Te2 appears to be a visually related cortical area. The data also indicate that projections from Te2 and Te3 target different subregions of the lateral nucleus and that Te2, but not Te3, projects to the basolateral nucleus. J. Comp. Neurol. 382:153‐175, 1997.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A knockin mouse model of the Bardet–Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity

Roger E. Davis; Ruth E. Swiderski; Kamal Rahmouni; Darryl Y. Nishimura; Robert F. Mullins; Khristofor Agassandian; Alisdair R. Philp; Charles Searby; Michael P. Andrews; Stewart Thompson; Christopher J. Berry; Daniel R. Thedens; Baoli Yang; Robert M. Weiss; Martin D. Cassell; Edwin M. Stone; Val C. Sheffield

Bardet–Biedl syndrome (BBS) is a genetically heterogeneous disorder that results in retinal degeneration, obesity, cognitive impairment, polydactyly, renal abnormalities, and hypogenitalism. Of the 12 known BBS genes, BBS1 is the most commonly mutated, and a single missense mutation (M390R) accounts for ≈80% of BBS1 cases. To gain insight into the function of BBS1, we generated a Bbs1M390R/M390R knockin mouse model. Mice homozygous for the M390R mutation recapitulated aspects of the human phenotype, including retinal degeneration, male infertility, and obesity. The obese mutant mice were hyperphagic and hyperleptinemic and exhibited reduced locomotor activity but no elevation in mean arterial blood pressure. Morphological evaluation of Bbs1 mutant brain neuroanatomy revealed ventriculomegaly of the lateral and third ventricles, thinning of the cerebral cortex, and reduced volume of the corpus striatum and hippocampus. Similar abnormalities were also observed in the brains of Bbs2−/−, Bbs4−/−, and Bbs6−/− mice, establishing these neuroanatomical defects as a previously undescribed BBS mouse model phenotype. Ultrastructural examination of the ependymal cell cilia that line the enlarged third ventricle of the Bbs1 mutant brains showed that, whereas the 9 + 2 arrangement of axonemal microtubules was intact, elongated cilia and cilia with abnormally swollen distal ends were present. Together with data from transmission electron microscopy analysis of photoreceptor cell connecting cilia, the Bbs1 M390R mutation does not affect axonemal structure, but it may play a role in the regulation of cilia assembly and/or function.


Circulation Research | 1998

The Brain Renin-Angiotensin System Contributes to the Hypertension in Mice Containing Both the Human Renin and Human Angiotensinogen Transgenes

Robin L. Davisson; Gongyu Yang; Terry G. Beltz; Martin D. Cassell; Alan Kim Johnson; Curt D. Sigmund

We have previously shown that mice transgenic for both the human renin and human angiotensinogen genes (RA+) exhibit appropriate tissue- and cell-specific expression of both transgenes, have 4-fold higher plasma angiotensin II (AII) levels, and are chronically hypertensive. However, the relative contribution of circulating and tissue-derived AII in causing hypertension in these animals is not known. We hypothesized that the brain renin-angiotensin system contributes to the elevated blood pressure in this model. To address this hypothesis, mean arterial pressure (MAP) and heart rate were measured in conscious, unrestrained mice after they were instrumented with intracerebroventricular cannulae and carotid arterial and jugular vein catheters. Intracerebroventricular administration of the selective AII type 1 (AT-1) receptor antagonist losartan (10 microgram, 1 microL) caused a significantly greater peak fall in MAP in RA+ mice than in nontransgenic RA- controls (-29+/-4 versus -4+/-2 mm Hg, P<0.01). To explore the mechanism of a central renin-angiotensin system-dependent hypertension in RA+ mice, we determined the relative depressor responses to intravenous administration of the ganglionic blocking agent hexamethonium (5 mg/kg) or an arginine vasopressin (AVP) V1 receptor antagonist (AVPX, 10 microgram/kg). Hexamethonium caused equal lowering of MAP in RA+ mice and controls (-46+/-3 versus -52+/-3, P>0.05), whereas AVPX caused a significantly greater fall in MAP in RA+ compared with RA- mice (-24+/-2 versus -6+/-1, P<0.01). Consistent with this was the observation that circulating AVP was 3-fold higher in RA+ mice than in control mice. These results suggest that increased activation of central AT-1 receptors, perhaps those located at sites involved in AVP release from the posterior pituitary gland, plays a role in the hypertension in RA+ mice. Furthermore, our finding that both human transgenes are expressed in brain regions of RA+ mice known to be involved in cardiovascular regulation raises the possibility that augmented local production of AII and increased activation of AT-1 receptors at these sites is involved.


The Journal of Comparative Neurology | 1999

Perirhinal cortex projections to the amygdaloid complex and hippocampal formation in the rat

C.-J. Shi; Martin D. Cassell

The differential efferent projections of the perirhinal cortex were traced by using anterograde and retrograde tracing techniques. The dorsal bank cortex (area 36) projected lightly to the lateral entorhinal cortex and more strongly to the lateral, posterolateral cortical, and posterior basomedial amygdaloid nuclei and amygdalostriatal transition zone. The ventral bank (dorsolateral entorhinal cortex) projected to the lateral entorhinal cortex, dorsal subiculum, and subfield CA1 and mainly targeted the basolateral amygdaloid nucleus. Corticocortical projections from the dorsal and ventral banks targeted different cortical areas. The fundus of the rhinal sulcus (area 35) projected to both lateral and medial entorhinal cortices, ventral subiculum, lateral and basolateral nuclei, and amygdalostriatal transition zone. Corticocortical projections targeted areas projected to by both dorsal and ventral banks and also by second somatosensory area, first temporal cortical area, and striate cortex. Neurons projecting to the lateral nucleus were distributed in all layers of the dorsal bank, wheras those projecting to CA1 and subiculum were found in superfical layers (mostly layer III) of the ventral bank. Projections to the basolateral nucleus arose from superfical layers (mostly layer II) of the fundus and deep layers of the ventral bank. Furthermore, projections to the amygdala mostly arose from rostral levels, whereas hippocampal projections primarily originated caudally. The rat perirhinal cortex is heterogeneous in its efferent connectivity, and distinct projections arise from the dorsal and ventral banks and fundus of the rhinal sulcus. The widespread cortical connectivity of the fundus suggests that only this part of the perirhinal cortex is similar to area 35 of the primate brain. J. Comp. Neurol. 406:299–328, 1999.


Brain Research | 1994

Distribution of dopaminergic fibers in the central division of the extended amygdala of the rat

L.J. Freedman; Martin D. Cassell

The distribution of dopaminergic fibers in the principal components of the central extended amygdala (central amygdaloid nucleus (Ce), substantia innominata, and bed nucleus of the stria terminalis (BNST)), was studied using immunocytochemistry against tyrosine hydroxylase, dopamine beta-hydroxylase and dopamine. Dopamine fibers were found most densely distributed in the dorsolateral subdivision of the BNST and the lateral part of the Ce. Smaller numbers of dopaminergic fibers were found in the rest of the central extended amygdala. In contrast, dopamine beta-hydroxylase fibers were virtually absent from the dorsolateral bed nucleus of the stria terminalis and lateral part of the central amygdaloid nucleus, but were distributed in a moderate density in the medial part of Ce, dorsal substantia innominata and posterolateral BNST. Our results show that dopamine fibers are most concentration over those regions of the central extended amygdala with large numbers of GABAergic neurons whose projections remain within the central extended amygdala, while noradrenergic fibers are most heavily concentrated over those regions containing a large proportion of brainstem projection neurons. That dopamine fibers are concentrated over regions with GABAergic medium spiny neurons suggests that those regions might be organized as a striatal parallel.


Brain Research Bulletin | 1991

Rat central amygdaloid nucleus projections to the bed nucleus of the stria terminalis

N. Sun; L. Roberts; Martin D. Cassell

The projections from the central amygdaloid nucleus (Ce) to different subdivisions of the bed nucleus of the stria terminalis (BNST) were investigated using retrograde transport of fluorescent dyes. Iontophoretic injections of either Fast Blue (FB) or bisbenzimide (BB) were applied to the anterior medial, posterior medial, anterior lateral and posterior lateral parts of the bed nucleus of the stria terminalis. The anterior medial BNST receives projections from caudal part of medial Ce (CeM). The posterior medial BNST receives projections specifically from the intermediate subdivision of Ce, though in some cases projections from the ventral subdivision (CeV) of Ce were seen. The anterior lateral BNST receives projections primarily from the caudal lateral Ce (CeL) as well as middle and caudal part of CeM. The posterior lateral BNST receives projection from rostral CeL as well as the CeV and lateral capsular Ce. In general, the results indicate that the major subdivisions of the BNST receive projections from Ce subdivisions having similar connections with diencephalic or brainstem cell groups. Additional evidence is presented suggesting that Ce-BNST projections are part of an extensive system of intrinsic connections linking similar groups of neurons in both the Ce and BNST as well as within Ce.


The Journal of Comparative Neurology | 2009

Parcellation of Human Temporal Polar Cortex: A Combined Analysis of Multiple Cytoarchitectonic, Chemoarchitectonic and Pathological Markers

Song-Lin Ding; Gary W. Van Hoesen; Martin D. Cassell; Amy Poremba

Although the human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high‐order brain functions and many neurological diseases, few studies on the parcellation and extent of the human TPC are available that have used modern neuroanatomical techniques. The present study investigated the TPC with combined analysis of several different cellular, neurochemical, and pathological markers and found that this area is not homogenous, as at least six different areas extend into the TPC, with another area being unique to the polar region. Specifically, perirhinal area 35 extends into the posterior TPC, whereas areas 36 and TE extend more anteriorly. Dorsolaterally, an area located anterior to the typical area TA or parabelt auditory cortex is distinguishable from area TA and is defined as area TAr (rostral). The polysensory cortical area located primarily in the dorsal bank of the superior temporal sulcus, separate from area TA, extends for some distance into the TPC and is defined as the TAp (polysensory). Anterior to the limen insulae and the temporal pyriform cortex, a cortical area, characterized by its olfactory fibers in layer Ia and lack of layer IV, was defined as the temporal insular cortex and named as area TI after Beck (J. Psychol. Neurol. 1934;41:129–264). Finally, a dysgranular TPC region that capped the tip with some extension into the dorsal aspect of the TPC is defined as temporopolar area TG. Therefore, the human TPC actually includes areas TAr and TI, anterior parts of areas 35, 36, TE, and TAp, and the unique temporopolar area TG. J. Comp. Neurol. 514:595–623, 2009.

Collaboration


Dive into the Martin D. Cassell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony P. Thompson

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Deborah R. Davis

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aline M. Hilzendeger

Federal University of São Paulo

View shared research outputs
Researchain Logo
Decentralizing Knowledge