Khurrum Shahzad
Otto-von-Guericke University Magdeburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Khurrum Shahzad.
Kidney International | 2015
Khurrum Shahzad; Fabian Bock; Wei Dong; Hongjie Wang; Stefan Kopf; Shrey Kohli; Moh'd Mohanad Al-Dabet; Satish Ranjan; Juliane Wolter; Christian Wacker; Ronald Biemann; Stoyan Stoyanov; Klaus G. Reymann; Peter Söderkvist; Olaf Groß; Vedat Schwenger; Sascha Pahernik; Peter P. Nawroth; H.-J. Gröne; Thati Madhusudhan; Berend Isermann
Diabetic nephropathy is a growing health concern with characteristic sterile inflammation. As the underlying mechanisms of this inflammation remain poorly defined, specific therapies targeting sterile inflammation in diabetic nephropathy are lacking. Intriguingly, an association of diabetic nephropathy with inflammasome activation has recently been shown, but the pathophysiological relevance of this finding remains unknown. Within glomeruli, inflammasome activation was detected in endothelial cells and podocytes in diabetic humans and mice and in glucose-stressed glomerular endothelial cells and podocytes in vitro. Abolishing Nlrp3 or caspase-1 expression in bone marrow–derived cells fails to protect mice against diabetic nephropathy. Conversely, Nlrp3-deficient mice are protected against diabetic nephropathy despite transplantation of wild-type bone marrow. Pharmacological IL-1R antagonism prevented or even reversed diabetic nephropathy in mice. Mitochondrial reactive oxygen species (ROS) activate the Nlrp3 inflammasome in glucose or advanced glycation end product stressed podocytes. Inhibition of mitochondrial ROS prevents glomerular inflammasome activation and nephropathy in diabetic mice. Thus, mitochondrial ROS and Nlrp3-inflammasome activation in non-myeloid-derived cells aggravate diabetic nephropathy. Targeting the inflammasome may be a potential therapeutic approach to diabetic nephropathy.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Fabian Bock; Khurrum Shahzad; Hongjie Wang; Stoyan Stoyanov; Juliane Wolter; Wei Dong; Pier Giuseppe Pelicci; Muhammed Kashif; Satish Ranjan; Simone Schmidt; Robert A. Ritzel; Vedat Schwenger; Klaus G. Reymann; Charles T. Esmon; Thati Madhusudhan; Peter P. Nawroth; Berend Isermann
The coagulation protease activated protein C (aPC) confers cytoprotective effects in various in vitro and in vivo disease models, including diabetic nephropathy. The nephroprotective effect may be related to antioxidant effects of aPC. However, the mechanism through which aPC may convey these antioxidant effects and the functional relevance of these properties remain unknown. Here, we show that endogenous and exogenous aPC prevents glomerular accumulation of oxidative stress markers and of the redox-regulating protein p66Shc in experimental diabetic nephropathy. These effects were predominately observed in podocytes. In vitro, aPC inhibited glucose-induced expression of p66Shc mRNA and protein in podocytes (via PAR-1 and PAR-3) and various endothelial cell lines, but not in glomerular endothelial cells. Treatment with aPC reversed glucose-induced hypomethylation and hyperacetylation of the p66Shc promoter in podocytes. The hyperacetylating agent sodium butyrate abolished the suppressive effect of aPC on p66Shc expression both in vitro and in vivo. Moreover, sodium butyrate abolished the beneficial effects of aPC in experimental diabetic nephropathy. Inhibition of p66Shc expression and mitochondrial translocation by aPC normalized mitochondrial ROS production and the mitochondrial membrane potential in glucose-treated podocytes. Genetic ablation of p66Shc compensated for the loss of protein C activation in vivo, normalizing markers of diabetic nephropathy and oxidative stress. These studies identify a unique mechanism underlying the cytoprotective effect of aPC. Activated PC epigenetically controls expression of the redox-regulating protein p66Shc, thus linking the extracellular protease aPC to mitochondrial function in diabetic nephropathy.
Blood | 2012
Thati Madhusudhan; Hongjie Wang; Beate K. Straub; Elisabeth Gröne; Qianxing Zhou; Khurrum Shahzad; Sandra Müller-Krebs; Vedat Schwenger; Bruce Gerlitz; Brian W. Grinnell; Jochen Reiser; Hermann Josef Gröne; Charles T. Esmon; Peter P. Nawroth; Berend Isermann
The cytoprotective effects of activated protein C (aPC) are well established. In contrast, the receptors and signaling mechanism through which aPC conveys cytoprotection in various cell types remain incompletely defined. Thus, within the renal glomeruli, aPC preserves endothelial cells via a protease-activated receptor-1 (PAR-1) and endothelial protein C receptor-dependent mechanism. Conversely, the signaling mechanism through which aPC protects podocytes remains unknown. While exploring the latter, we identified a novel aPC/PAR-dependent cytoprotective signaling mechanism. In podocytes, aPC inhibits apoptosis through proteolytic activation of PAR-3 independent of endothelial protein C receptor. PAR-3 is not signaling competent itself as it requires aPC-induced heterodimerization with PAR-2 (human podocytes) or PAR-1 (mouse podocytes). This cytoprotective signaling mechanism depends on caveolin-1 dephosphorylation. In vivo aPC protects against lipopolysaccharide-induced podocyte injury and proteinuria. Genetic deletion of PAR-3 impairs the nephroprotective effect of aPC, demonstrating the crucial role of PAR-3 for aPC-dependent podocyte protection. This novel, aPC-mediated interaction of PARs demonstrates the plasticity and cell-specificity of cytoprotective aPC signaling. The evidence of specific, dynamic signaling complexes underlying aPC-mediated cytoprotection may allow the design of cell type specific targeted therapies.
Circulation | 2009
Stefanie Seehaus; Khurrum Shahzad; Muhammed Kashif; Ilya A. Vinnikov; Martin Schiller; Hongjie Wang; Thati Madhusudhan; Volker Eckstein; Angelika Bierhaus; Florian Bea; Erwin Blessing; Hartmut Weiler; David Frommhold; Peter P. Nawroth; Berend Isermann
Background— Clinical studies failed to provide clear evidence for a proatherogenic role of hypercoagulability. This is in contrast to the well-established detrimental role of hypercoagulability and thrombin during acute atherosclerotic complications. These seemingly opposing data suggest that hypercoagulability might exert both proatherogenic and antiatherogenic effects. We therefore investigated whether hypercoagulability mediates a beneficial effect during de novo atherogenesis. Methods and Results— De novo atherogenesis was evaluated in 2 mouse models with hyperlipidemia and genetically imposed hypercoagulability (TMPro/ProApoE−/− and FVLQ/QApoE−/− mice). In both mouse models, hypercoagulability resulted in larger plaques, but vascular stenosis was not enhanced secondary to positive vascular remodeling. Importantly, plaque stability was increased in hypercoagulable mice with less necrotic cores, more extracellular matrix, more smooth muscle cells, and fewer macrophages. Long-term anticoagulation reversed these changes. The reduced frequency of intraplaque macrophages in hypercoagulable mice is explained by an inhibitory role of thrombin and protease-activated receptor-1 on monocyte transendothelial migration in vitro. This is dependent on phospholipase-Cβ, phosphoinositide 3-kinase, and nitric oxide signaling in monocytes but not in endothelial cells. Conclusions— Here, we show a new function of the coagulation system, averting stenosis and plaque destabilization during de novo atherogenesis. The in vivo and in vitro data establish that thrombin-induced signaling via protease-activated receptor-1, phospholipase-Cβ, phosphoinositide 3-kinase, and nitric oxide in monocytes impairs monocyte transendothelial migration. This likely accounts for the reduced macrophage accumulation in plaques of hypercoagulable mice. Thus, in contrast to their role in unstable plaques or after vascular injury, hypercoagulability and thrombin convey a protective effect during de novo atherogenesis.
Mediators of Inflammation | 2011
Qianxing Zhou; Florian Bea; Michael Preusch; Hongjie Wang; Berend Isermann; Khurrum Shahzad; Hugo A. Katus; Erwin Blessing
Aim. Thrombin not only plays a central role in thrombus formation and platelet activation, but also in induction of inflammatory processes. Activated factor X (FXa) is traditionally known as an important player in the coagulation cascade responsible for thrombin generation. We assessed the hypothesis that rivaroxaban, a direct FXa inhibitor, attenuates plaque progression and promotes stability of advanced atherosclerotic lesions in an in vivo model. Methods and Results. Rivaroxaban (1 or 5 mg/kg body weight/day) or standard chow diet was administered for 26 weeks to apolipoprotein E-deficient mice (n = 20 per group) with already established atherosclerotic lesions. There was a nonsignificant reduction of lesion progression in the high-concentration group, compared to control mice. FXa inhibition with 5 mg Rivaroxaban/kg/day resulted in increased thickness of the protective fibrous caps (12.3 ± 3.8 μm versus 10.1 ± 2.7 μm; P < .05), as well as in fewer medial erosions and fewer lateral xanthomas, indicating plaque stabilizing properties. Real time-PCR from thoracic aortas revealed that rivaroxaban (5 mg/kg/day) treatment reduced mRNA expression of inflammatory mediators, such of IL-6, TNF-α, MCP-1, and Egr-1 (P < .05). Conclusions. Chronic administration of rivaroxaban does not affect lesion progression but downregulates expression of inflammatory mediators and promotes lesion stability in apolipoprotein E-deficient mice.
Nature Communications | 2015
Thati Madhusudhan; Hongjie Wang; Wei Dong; Sanchita Ghosh; Fabian Bock; Veera Raghavan Thangapandi; Satish Ranjan; Juliane Wolter; Shrey Kohli; Khurrum Shahzad; Florian H. Heidel; Martin W Krueger; Vedat Schwenger; Marcus J. Moeller; Thomas Kalinski; Jochen Reiser; Triantafyllos Chavakis; Berend Isermann
Endoplasmic reticulum (ER) stress is associated with diabetic nephropathy (DN), but its pathophysiological relevance and the mechanisms that compromise adaptive ER signalling in podocytes remain unknown. Here we show that nuclear translocation of the transcription factor spliced X-box binding protein-1 (sXBP1) is selectively impaired in DN, inducing activating transcription factor-6 (ATF6) and C/EBP homology protein (CHOP). Podocyte-specific genetic ablation of XBP1 or inducible expression of ATF6 in mice aggravates DN. sXBP1 lies downstream of insulin signalling and attenuating podocyte insulin signalling by genetic ablation of the insulin receptor or the regulatory subunits phosphatidylinositol 3-kinase (PI3K) p85α or p85β impairs sXBP1 nuclear translocation and exacerbates DN. Corroborating our findings from murine DN, the interaction of sXBP1 with p85α and p85β is markedly impaired in the glomerular compartment of human DN. Thus, signalling via the insulin receptor, p85, and XBP1 maintains podocyte homeostasis, while disruption of this pathway impairs podocyte function in DN.
Blood | 2011
Hongjie Wang; Thati Madhusudhan; Tao He; Björn Hummel; Simone Schmidt; Ilya A. Vinnikov; Khurrum Shahzad; Muhammed Kashif; Sandra Müller-Krebs; Vedat Schwenger; Angelika Bierhaus; Gottfried Rudofsky; Peter P. Nawroth; Berend Isermann
Whereas it is generally perceived to be harmful, enhanced coagulation activation can also convey salutary effects. The high prevalence of the prothrombotic factor V Leiden (FVL) mutation in whites has been attributed to a positive selection pressure (eg, resulting from reduced blood loss or improved survival in sepsis). The consequences of enhanced coagulation activation, as observed in FVL carriers, on microvascular diabetic complications remain unknown. We therefore investigated the role of FVL in diabetic nephropathy. In heterozygous or homozygous diabetic FVL mice, albuminuria and indices of diabetic nephropathy were reduced compared with diabetic wild-type mice. This was associated with reduced glomerular apoptosis and preservation of podocytes in diabetic FVL-positive mice. In vitro, low-dose thrombin (50pM) prevented, whereas high-dose thrombin (20nM) aggravated, glucose-induced apoptosis in podocytes. In diabetic patients, the FVL mutation, but not the plasminogen activator inhibitor-1 4G/5G polymorphism, is associated with reduced albuminuria, which is consistent with a nephroprotective role of low but sustained thrombin generation. Consistently, anticoagulation of diabetic FVL-positive mice with hirudin abolished the nephroprotective effect. These results identify a nephroprotective function of low but sustained thrombin levels in FVL carriers, supporting a dual, context-dependent function of thrombin in chronic diseases.
Thrombosis and Haemostasis | 2012
Hongjie Wang; Ilya A. Vinnikov; Khurrum Shahzad; Fabian Bock; Satish Ranjan; Juliane Wolter; Muhammed Kashif; Jun Oh; Angelika Bierhaus; Peter P. Nawroth; Michael Kirschfink; Edward M. Conway; Thati Madhusudhan; Berend Isermann
Coagulation and complement regulators belong to two interactive systems constituting emerging mechanisms of diabetic nephropathy. Thrombomodulin (TM) regulates both coagulation and complement activation, in part through discrete domains. TMs lectin like domain dampens complement activation, while its EGF-like domains independently enhance activation of the anti-coagulant and cytoprotective serine protease protein C (PC). A protective effect of activated PC in diabetic nephropathy is established. We hypothesised that TM controls diabetic nephropathy independent of PC through its lectin-like domain by regulating complement. Diabetic nephropathy was analysed in mice lacking TMs lectin-like domain (TMLeD/LeD) and controls (TMwt/wt). Albuminuria (290 μg/mg vs. 166 μg/mg, p=0.03) and other indices of experimental diabetic nephropathy were aggravated in diabetic TMLeD/LeD mice. Complement deposition (C3 and C5b-9) was markedly increased in glomeruli of diabetic TMLeD/LeD mice. Complement inhibition with enoxaparin ameliorated diabetic nephropathy in TMLeD/LeD mice (e.g. albuminuria 85 μg/mg vs. 290 μg/mg, p<0.001). In vitro TMs lectin-like domain cell-autonomously prevented glucose-induced complement activation on endothelial cells and - notably - on podocytes. Podocyte injury, which was enhanced in diabetic TMLeD/LeD mice, was reduced following complement inhibition with enoxaparin. The current study identifies a novel mechanism regulating complement activation in diabetic nephropathy. TMs lectin-like domain constrains glucose-induced complement activation on endothelial cells and podocytes and ameliorates albuminuria and glomerular damage in mice.
Scientific Reports | 2016
Khurrum Shahzad; Fabian Bock; Moh’d Mohanad Al-Dabet; Ihsan Gadi; Sumra Nazir; Hongjie Wang; Shrey Kohli; Satish Ranjan; Peter R. Mertens; Peter P. Nawroth; Berend Isermann
While a plethora of studies support a therapeutic benefit of Nrf2 activation and ROS inhibition in diabetic nephropathy (dNP), the Nrf2 activator bardoxolone failed in clinical studies in type 2 diabetic patients due to cardiovascular side effects. Hence, alternative approaches to target Nrf2 are required. Intriguingly, the tetracycline antibiotic minocycline, which has been in clinical use for decades, has been shown to convey anti-inflammatory effects in diabetic patients and nephroprotection in rodent models of dNP. However, the mechanism underlying the nephroprotection remains unknown. Here we show that minocycline protects against dNP in mouse models of type 1 and type 2 diabetes, while caspase -3,-6,-7,-8 and -10 inhibition is insufficient, indicating a function of minocycline independent of apoptosis inhibition. Minocycline stabilizes endogenous Nrf2 in kidneys of db/db mice, thus dampening ROS-induced inflammasome activation in the kidney. Indeed, minocycline exerts antioxidant effects in vitro and in vivo, reducing glomerular markers of oxidative stress. Minocycline reduces ubiquitination of the redox-sensitive transcription factor Nrf2 and increases its protein levels. Accordingly, minocycline mediated Nlrp3 inflammasome inhibition and amelioration of dNP are abolished in diabetic Nrf2−/− mice. Taken together, we uncover a new function of minocycline, which stabilizes the redox-sensitive transcription factor Nrf2, thus protecting from dNP.
Journal of The American Society of Nephrology | 2015
Wei Dong; Hongjie Wang; Khurrum Shahzad; Fabian Bock; Moh'd Mohanad Al-Dabet; Satish Ranjan; Juliane Wolter; Shrey Kohli; Juliane Hoffmann; Vishnu Mukund Dhople; Cheng Zhu; Jonathan A. Lindquist; Charles T. Esmon; Elisabeth Gröne; H.-J. Gröne; Thati Madhusudhan; Peter R. Mertens; Dirk Schlüter; Berend Isermann
Ischemia-reperfusion injury (IRI) is the leading cause of ARF. A pathophysiologic role of the coagulation system in renal IRI has been established, but the functional relevance of thrombomodulin (TM)-dependent activated protein C (aPC) generation and the intracellular targets of aPC remain undefined. Here, we investigated the role of TM-dependent aPC generation and therapeutic aPC application in a murine renal IRI model and in an in vitro hypoxia and reoxygenation (HR) model using proximal tubular cells. In renal IRI, endogenous aPC levels were reduced. Genetic or therapeutic reconstitution of aPC efficiently ameliorated renal IRI independently of its anticoagulant properties. In tubular cells, cytoprotective aPC signaling was mediated through protease activated receptor-1- and endothelial protein C receptor-dependent regulation of the cold-shock protein Y-box binding protein-1 (YB-1). The mature 50 kD form of YB-1 was required for the nephro- and cytoprotective effects of aPC in vivo and in vitro, respectively. Reduction of mature YB-1 and K48-linked ubiquitination of YB-1 was prevented by aPC after renal IRI or tubular HR injury. aPC preserved the interaction of YB-1 with the deubiquitinating enzyme otubain-1 and maintained expression of otubain-1, which was required to reduce K48-linked YB-1 ubiquitination and to stabilize the 50 kD form of YB-1 after renal IRI and tubular HR injury. These data link the cyto- and nephroprotective effects of aPC with the ubiquitin-proteasome system and identify YB-1 as a novel intracellular target of aPC. These insights may provide new impetus for translational efforts aiming to restrict renal IRI.