Satish Ranjan
Otto-von-Guericke University Magdeburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Satish Ranjan.
Kidney International | 2015
Khurrum Shahzad; Fabian Bock; Wei Dong; Hongjie Wang; Stefan Kopf; Shrey Kohli; Moh'd Mohanad Al-Dabet; Satish Ranjan; Juliane Wolter; Christian Wacker; Ronald Biemann; Stoyan Stoyanov; Klaus G. Reymann; Peter Söderkvist; Olaf Groß; Vedat Schwenger; Sascha Pahernik; Peter P. Nawroth; H.-J. Gröne; Thati Madhusudhan; Berend Isermann
Diabetic nephropathy is a growing health concern with characteristic sterile inflammation. As the underlying mechanisms of this inflammation remain poorly defined, specific therapies targeting sterile inflammation in diabetic nephropathy are lacking. Intriguingly, an association of diabetic nephropathy with inflammasome activation has recently been shown, but the pathophysiological relevance of this finding remains unknown. Within glomeruli, inflammasome activation was detected in endothelial cells and podocytes in diabetic humans and mice and in glucose-stressed glomerular endothelial cells and podocytes in vitro. Abolishing Nlrp3 or caspase-1 expression in bone marrow–derived cells fails to protect mice against diabetic nephropathy. Conversely, Nlrp3-deficient mice are protected against diabetic nephropathy despite transplantation of wild-type bone marrow. Pharmacological IL-1R antagonism prevented or even reversed diabetic nephropathy in mice. Mitochondrial reactive oxygen species (ROS) activate the Nlrp3 inflammasome in glucose or advanced glycation end product stressed podocytes. Inhibition of mitochondrial ROS prevents glomerular inflammasome activation and nephropathy in diabetic mice. Thus, mitochondrial ROS and Nlrp3-inflammasome activation in non-myeloid-derived cells aggravate diabetic nephropathy. Targeting the inflammasome may be a potential therapeutic approach to diabetic nephropathy.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Fabian Bock; Khurrum Shahzad; Hongjie Wang; Stoyan Stoyanov; Juliane Wolter; Wei Dong; Pier Giuseppe Pelicci; Muhammed Kashif; Satish Ranjan; Simone Schmidt; Robert A. Ritzel; Vedat Schwenger; Klaus G. Reymann; Charles T. Esmon; Thati Madhusudhan; Peter P. Nawroth; Berend Isermann
The coagulation protease activated protein C (aPC) confers cytoprotective effects in various in vitro and in vivo disease models, including diabetic nephropathy. The nephroprotective effect may be related to antioxidant effects of aPC. However, the mechanism through which aPC may convey these antioxidant effects and the functional relevance of these properties remain unknown. Here, we show that endogenous and exogenous aPC prevents glomerular accumulation of oxidative stress markers and of the redox-regulating protein p66Shc in experimental diabetic nephropathy. These effects were predominately observed in podocytes. In vitro, aPC inhibited glucose-induced expression of p66Shc mRNA and protein in podocytes (via PAR-1 and PAR-3) and various endothelial cell lines, but not in glomerular endothelial cells. Treatment with aPC reversed glucose-induced hypomethylation and hyperacetylation of the p66Shc promoter in podocytes. The hyperacetylating agent sodium butyrate abolished the suppressive effect of aPC on p66Shc expression both in vitro and in vivo. Moreover, sodium butyrate abolished the beneficial effects of aPC in experimental diabetic nephropathy. Inhibition of p66Shc expression and mitochondrial translocation by aPC normalized mitochondrial ROS production and the mitochondrial membrane potential in glucose-treated podocytes. Genetic ablation of p66Shc compensated for the loss of protein C activation in vivo, normalizing markers of diabetic nephropathy and oxidative stress. These studies identify a unique mechanism underlying the cytoprotective effect of aPC. Activated PC epigenetically controls expression of the redox-regulating protein p66Shc, thus linking the extracellular protease aPC to mitochondrial function in diabetic nephropathy.
Nature Communications | 2015
Thati Madhusudhan; Hongjie Wang; Wei Dong; Sanchita Ghosh; Fabian Bock; Veera Raghavan Thangapandi; Satish Ranjan; Juliane Wolter; Shrey Kohli; Khurrum Shahzad; Florian H. Heidel; Martin W Krueger; Vedat Schwenger; Marcus J. Moeller; Thomas Kalinski; Jochen Reiser; Triantafyllos Chavakis; Berend Isermann
Endoplasmic reticulum (ER) stress is associated with diabetic nephropathy (DN), but its pathophysiological relevance and the mechanisms that compromise adaptive ER signalling in podocytes remain unknown. Here we show that nuclear translocation of the transcription factor spliced X-box binding protein-1 (sXBP1) is selectively impaired in DN, inducing activating transcription factor-6 (ATF6) and C/EBP homology protein (CHOP). Podocyte-specific genetic ablation of XBP1 or inducible expression of ATF6 in mice aggravates DN. sXBP1 lies downstream of insulin signalling and attenuating podocyte insulin signalling by genetic ablation of the insulin receptor or the regulatory subunits phosphatidylinositol 3-kinase (PI3K) p85α or p85β impairs sXBP1 nuclear translocation and exacerbates DN. Corroborating our findings from murine DN, the interaction of sXBP1 with p85α and p85β is markedly impaired in the glomerular compartment of human DN. Thus, signalling via the insulin receptor, p85, and XBP1 maintains podocyte homeostasis, while disruption of this pathway impairs podocyte function in DN.
Thrombosis and Haemostasis | 2012
Hongjie Wang; Ilya A. Vinnikov; Khurrum Shahzad; Fabian Bock; Satish Ranjan; Juliane Wolter; Muhammed Kashif; Jun Oh; Angelika Bierhaus; Peter P. Nawroth; Michael Kirschfink; Edward M. Conway; Thati Madhusudhan; Berend Isermann
Coagulation and complement regulators belong to two interactive systems constituting emerging mechanisms of diabetic nephropathy. Thrombomodulin (TM) regulates both coagulation and complement activation, in part through discrete domains. TMs lectin like domain dampens complement activation, while its EGF-like domains independently enhance activation of the anti-coagulant and cytoprotective serine protease protein C (PC). A protective effect of activated PC in diabetic nephropathy is established. We hypothesised that TM controls diabetic nephropathy independent of PC through its lectin-like domain by regulating complement. Diabetic nephropathy was analysed in mice lacking TMs lectin-like domain (TMLeD/LeD) and controls (TMwt/wt). Albuminuria (290 μg/mg vs. 166 μg/mg, p=0.03) and other indices of experimental diabetic nephropathy were aggravated in diabetic TMLeD/LeD mice. Complement deposition (C3 and C5b-9) was markedly increased in glomeruli of diabetic TMLeD/LeD mice. Complement inhibition with enoxaparin ameliorated diabetic nephropathy in TMLeD/LeD mice (e.g. albuminuria 85 μg/mg vs. 290 μg/mg, p<0.001). In vitro TMs lectin-like domain cell-autonomously prevented glucose-induced complement activation on endothelial cells and - notably - on podocytes. Podocyte injury, which was enhanced in diabetic TMLeD/LeD mice, was reduced following complement inhibition with enoxaparin. The current study identifies a novel mechanism regulating complement activation in diabetic nephropathy. TMs lectin-like domain constrains glucose-induced complement activation on endothelial cells and podocytes and ameliorates albuminuria and glomerular damage in mice.
Scientific Reports | 2016
Khurrum Shahzad; Fabian Bock; Moh’d Mohanad Al-Dabet; Ihsan Gadi; Sumra Nazir; Hongjie Wang; Shrey Kohli; Satish Ranjan; Peter R. Mertens; Peter P. Nawroth; Berend Isermann
While a plethora of studies support a therapeutic benefit of Nrf2 activation and ROS inhibition in diabetic nephropathy (dNP), the Nrf2 activator bardoxolone failed in clinical studies in type 2 diabetic patients due to cardiovascular side effects. Hence, alternative approaches to target Nrf2 are required. Intriguingly, the tetracycline antibiotic minocycline, which has been in clinical use for decades, has been shown to convey anti-inflammatory effects in diabetic patients and nephroprotection in rodent models of dNP. However, the mechanism underlying the nephroprotection remains unknown. Here we show that minocycline protects against dNP in mouse models of type 1 and type 2 diabetes, while caspase -3,-6,-7,-8 and -10 inhibition is insufficient, indicating a function of minocycline independent of apoptosis inhibition. Minocycline stabilizes endogenous Nrf2 in kidneys of db/db mice, thus dampening ROS-induced inflammasome activation in the kidney. Indeed, minocycline exerts antioxidant effects in vitro and in vivo, reducing glomerular markers of oxidative stress. Minocycline reduces ubiquitination of the redox-sensitive transcription factor Nrf2 and increases its protein levels. Accordingly, minocycline mediated Nlrp3 inflammasome inhibition and amelioration of dNP are abolished in diabetic Nrf2−/− mice. Taken together, we uncover a new function of minocycline, which stabilizes the redox-sensitive transcription factor Nrf2, thus protecting from dNP.
Journal of Biological Chemistry | 2010
Andriy V. Kubarenko; Satish Ranjan; Anna Rautanen; Tara C. Mills; Frederik Vannberg; Michael Neumaier; Isabelle Bekeredjian-Ding; Adrian V. S. Hill; Parviz Ahmad-Nejad; Alexander N. R. Weber
The innate immune system employs Toll-like receptors (TLRs) for the detection of invading microorganisms based on distinct molecular patterns. For example, TLR9 is activated by microbial DNA and also by short therapeutic CpG-containing oligonucleotides (CpG-ODN). TLR9 activation leads to the production of interferons and the priming of humoral adaptive immune responses. Unfortunately, the principles of ligand recognition by TLR9 are poorly understood, and genetic variants of TLR9, which may affect its function, have not been characterized systematically on the molecular level. We therefore sought to functionally characterize reported single nucleotide polymorphisms of TLR9 in the HEK293 model system. We discovered that two variants, P99L and M400I, are associated with altered receptor function regarding NF-κB activation and cytokine induction. Our investigations show that for the most functionally impaired variant, P99L, the ability to respond to physiological and therapeutic TLR9 ligands is severely compromised. However, CpG-ODN binding is normal. CpG-ODN recognition by TLR9 thus appears to involve two separate events, CpG-ODN binding and sensing. Our studies highlight Pro-99 as a residue important for the latter process. In genotyping studies, we confirmed that both M400I (rs41308230) and P99L (rs5743844) are relatively rare variants of TLR9. Our data add rs41308230 and rs5743844 to the list of functionally important TLR variants and warrant further research into their relevance for infectious disease susceptibility or responsiveness to CpG-ODN-based therapies.
Journal of The American Society of Nephrology | 2015
Wei Dong; Hongjie Wang; Khurrum Shahzad; Fabian Bock; Moh'd Mohanad Al-Dabet; Satish Ranjan; Juliane Wolter; Shrey Kohli; Juliane Hoffmann; Vishnu Mukund Dhople; Cheng Zhu; Jonathan A. Lindquist; Charles T. Esmon; Elisabeth Gröne; H.-J. Gröne; Thati Madhusudhan; Peter R. Mertens; Dirk Schlüter; Berend Isermann
Ischemia-reperfusion injury (IRI) is the leading cause of ARF. A pathophysiologic role of the coagulation system in renal IRI has been established, but the functional relevance of thrombomodulin (TM)-dependent activated protein C (aPC) generation and the intracellular targets of aPC remain undefined. Here, we investigated the role of TM-dependent aPC generation and therapeutic aPC application in a murine renal IRI model and in an in vitro hypoxia and reoxygenation (HR) model using proximal tubular cells. In renal IRI, endogenous aPC levels were reduced. Genetic or therapeutic reconstitution of aPC efficiently ameliorated renal IRI independently of its anticoagulant properties. In tubular cells, cytoprotective aPC signaling was mediated through protease activated receptor-1- and endothelial protein C receptor-dependent regulation of the cold-shock protein Y-box binding protein-1 (YB-1). The mature 50 kD form of YB-1 was required for the nephro- and cytoprotective effects of aPC in vivo and in vitro, respectively. Reduction of mature YB-1 and K48-linked ubiquitination of YB-1 was prevented by aPC after renal IRI or tubular HR injury. aPC preserved the interaction of YB-1 with the deubiquitinating enzyme otubain-1 and maintained expression of otubain-1, which was required to reduce K48-linked YB-1 ubiquitination and to stabilize the 50 kD form of YB-1 after renal IRI and tubular HR injury. These data link the cyto- and nephroprotective effects of aPC with the ubiquitin-proteasome system and identify YB-1 as a novel intracellular target of aPC. These insights may provide new impetus for translational efforts aiming to restrict renal IRI.
Protein Science | 2010
Andriy V. Kubarenko; Satish Ranjan; Elif Colak; Julie George; Martin Frank; Alexander N. R. Weber
Toll‐like receptors (TLRs) are innate immune pattern‐recognition receptors endowed with the capacity to detect microbial pathogens based on pathogen‐associated molecular patterns. The understanding of the molecular principles of ligand recognition by TLRs has been greatly accelerated by recent structural information, in particular the crystal structures of leucine‐rich repeat‐containing ectodomains of TLR2, 3, and 4 in complex with their cognate ligands. Unfortunately, for other family members such as TLR7, 8, and 9, no experimental structural information is currently available. Methods such as X‐ray crystallography or nuclear magnetic resonance are not applicable to all proteins. Homology modeling in combination with molecular dynamics may provide a straightforward yet powerful alternative to obtain structural information in the absence of experimental (structural) data, provided that the generated three‐dimensional models adequately approximate what is found in nature. Here, we report the development of modeling procedures tailored to the structural analysis of the extracellular domains of TLRs. We comprehensively compared secondary structure, torsion angles, accessibility for glycosylation, surface charge, and solvent accessibility between published crystal structures and independently built TLR2, 3, and 4 homology models. Finding that models and crystal structures were in good agreement, we extended our modeling approach to the remaining members of the TLR family from human and mouse, including TLR7, 8, and 9.
Journal of The American Society of Nephrology | 2016
Khurrum Shahzad; Fabian Bock; Moh’d Mohanad Al-Dabet; Ihsan Gadi; Shrey Kohli; Sumra Nazir; Sanchita Ghosh; Satish Ranjan; Hongjie Wang; Thati Madhusudhan; Peter P. Nawroth; Berend Isermann
Glomerular apoptosis may contribute to diabetic nephropathy (dNP), but the pathophysiologic relevance of this process remains obscure. Here, we administered two partially disjunct polycaspase inhibitors in 8-week-old diabetic (db/db) mice: M-920 (inhibiting caspase-1, -3, -4, -5, -6, -7, and -8) and CIX (inhibiting caspase-3, -6, -7, -8, and -10). Notably, despite reduction in glomerular cell death and caspase-3 activity by both inhibitors, only M-920 ameliorated dNP. Nephroprotection by M-920 was associated with reduced renal caspase-1 and inflammasome activity. Accordingly, analysis of gene expression data in the Nephromine database revealed persistently elevated glomerular expression of inflammasome markers (NLRP3, CASP1, PYCARD, IL-18, IL-1β), but not of apoptosis markers (CASP3, CASP7, PARP1), in patients with and murine models of dNP. In vitro, increased levels of markers of inflammasome activation (Nlrp3, caspase-1 cleavage) preceded those of markers of apoptosis activation (caspase-3 and -7, PARP1 cleavage) in glucose-stressed podocytes. Finally, caspase-3 deficiency did not protect mice from dNP, whereas both homozygous and hemizygous caspase-1 deficiency did. Hence, these results suggest caspase-3-dependent cell death has a negligible effect, whereas caspase-1-dependent inflammasome activation has a crucial function in the establishment of dNP. Furthermore, small molecules targeting caspase-1 or inflammasome activation may be a feasible therapeutic approach in dNP.
Journal of Biological Chemistry | 2012
Muhammed Kashif; Andrea Hellwig; Said Hashemolhosseini; Varun Kumar; Fabian Bock; Hongjie Wang; Khurrum Shahzad; Satish Ranjan; Juliane Wolter; Thati Madhusudhan; Angelika Bierhaus; Peter P. Nawroth; Berend Isermann
Background: Nfe2 restricts Gcm1 expression, placental vascularization, and embryonic growth. Results: Nfe2 induces hypoacetylation of JunD, thus limiting JunD binding to the Gcm1 promoter (at −1441). Conclusion: In trophoblast cells Nfe2 negatively controls Gcm1 expression and syncytiotrophoblast formation by repressing JunD-binding activity. Significance: This identifies a novel, acetylation dependent interaction of bZip transcription factors regulating placental and embryonic development. We recently demonstrated that the bZip transcription factor nuclear factor erythroid-derived 2 (Nfe2) represses protein acetylation and expression of the transcription factor glial cell missing 1 (Gcm1) in trophoblast cells, preventing excess syncytiotrophoblast formation and permitting normal placental vascularization and embryonic growth. However, the Gcm1 promoter lacks a Nfe2-binding site and hence the mechanisms linking Nfe2 and Gcm1 expression remained unknown. Here we show that Nfe2 represses JunD DNA-binding activity to the Gcm1 promoter during syncytiotrophoblast differentiation. Interventional studies using knockdown and knockin approaches show that enhanced JunD DNA-binding activity is required for increased expression of Gcm1 and syncytiotrophoblast formation as well as impaired placental vascularization and reduced growth of Nfe2−/− embryos. Induction of Gcm1 expression requires binding of JunD to the −1441 site within the Gcm1 promoter, which is distinct from the −1314 site previously shown to induce Gcm1 expression by other bZip transcription factors. Nfe2 modulates JunD binding to the Gcm1 promoter via acetylation, as reducing JunD acetylation using the histone acetyltransferase inhibitor curcumin reverses the increased JunD DNA-binding activity observed in the absence of Nfe2. This identifies a novel mechanism through which bZip transcription factors interact. Within the placenta this interaction regulates Gcm1 expression, syncytiotrophoblast formation, placental vascularization, and embryonic growth.