Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kiattawee Choowongkomon is active.

Publication


Featured researches published by Kiattawee Choowongkomon.


Journal of Biological Chemistry | 2005

A Structural Model for the Membrane-Bound Form of the Juxtamembrane Domain of the Epidermal Growth Factor Receptor.

Kiattawee Choowongkomon; Catthleen R. Carlin; Frank D. Sönnichsen

The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family involved in the regulation of cellular proliferation and differentiation. Its juxtamembrane domain (JX), the region located between the transmembrane and kinase domains, plays important roles in receptor trafficking. Two sorting signals, a PXXP motif and a 658LL659 motif, are responsible for basolateral sorting in polarized epithelial cells, and a 679LL680 motif targets the ligand-activated receptor for lysosomal degradation. To understand the regulation of these signals, we characterized the structural properties of recombinant JX domain in aqueous solution and in dodecylphosphocholine (DPC) detergent. JX is inherently unstructured in aqueous solution, albeit a nascent helix encompasses the lysosomal sorting signal. In DPC micelles, structures derived from NMR data showed three amphipathic, helical segments. A large, internally inconsistent group of long range nuclear Overhauser effects suggest a close proximity of the helices, and the presence of significant conformational averaging. Models were determined for the average JX conformation using restraints representing the translational restriction due to micelle-surface adsorption, and the helix orientations were determined from residual dipolar couplings. Two equivalent average structural models were obtained that differ only in the relative orientation between first and second helices. In these models, the 658LL659 and 679LL680 motifs are located in the first and second helices and face the micelle surface, whereas the PXXP motif is located in a flexible helix-connecting region. The data suggest that the activity of these signals may be regulated by their membrane association and restricted accessibility in the intact receptor.


PLOS ONE | 2012

Cell Penetrable Humanized-VH/VHH That Inhibit RNA Dependent RNA Polymerase (NS5B) of HCV

Kanyarat Thueng-in; Jeeraphong Thanongsaksrikul; Potjanee Srimanote; Kunan Bangphoomi; Ornnuthchar Poungpair; Santi Maneewatch; Kiattawee Choowongkomon; Wanpen Chaicumpa

NS5B is pivotal RNA dependent RNA polymerase (RdRp) of HCV and NS5B function interfering halts the virus infective cycle. This work aimed to produce cell penetrable humanized single domain antibodies (SdAb; VH/VHH) that interfere with the RdRp activity. Recombinant NS5BΔ55 of genotype 3a HCV with de novo RNA synthetic activity was produced and used in phage biopanning for selecting phage clones that displayed NS5BΔ55 bound VH/VHH from a humanized-camel VH/VHH display library. VH/VHH from E. coli transfected with four selected phage clones inhibited RdRp activity when tested by ELISA inhibition using 3′di-cytidylate 25 nucleotide directed in vitro RNA synthesis. Deduced amino acid sequences of two clones showed VHH hallmark and were designated VHH6 and VHH24; other clones were conventional VH, designated VH9 and VH13. All VH/VHH were linked molecularly to a cell penetrating peptide, penetratin. The cell penetrable VH9, VH13, VHH6 and VHH24 added to culture of Huh7 cells transfected with JHF-1 RNA of genotype 2a HCV reduced the amounts of RNA intracellularly and in culture medium implying that they inhibited the virus replication. VH/VHH mimotopes matched with residues scattered on the polymerase fingers, palm and thumb which were likely juxtaposed to form conformational epitopes. Molecular docking revealed that the antibodies covered the RdRp catalytic groove. The transbodies await further studies for in vivo role in inhibiting HCV replication.


Biochemistry | 2008

Specificity determinants of a novel Nck interaction with the juxtamembrane domain of the epidermal growth factor receptor.

Michael Hake; Kiattawee Choowongkomon; Olga Kostenko; Cathleen R. Carlin; Frank D. Sönnichsen

Nck is a ubiquitously expressed adaptor protein containing Src homology 2 (SH2) and Src homology 3 (SH3) domains. It integrates downstream effector proteins with cell membrane receptors, such as the epidermal growth factor receptor (EGFR). EGFR plays a critical role in cellular proliferation and differentiation. The 45-residue juxtamembrane domain of EGFR (JM), located between the transmembrane and kinase domains, regulates receptor activation and trafficking to the basolateral membrane of polarized epithelia through a proline-rich motif that resembles a consensus SH3 domain binding site. We demonstrate here that the JM region can bind to Nck, showing a notable binding preference for the second SH3 domain. To elucidate the structural determinants for this interaction, we have determined the NMR solution structures of both the first and second Nck SH3 domains (Nck1-1 and Nck1-2). These domains adopt a canonical SH3 beta-barrel-like fold, containing five antiparallel strands separated by three loop regions and one 3 10-helical turn. Chemical shift perturbation studies have identified the residues that form the binding cleft of Nck1-2, which are primarily located in the RT and n-Src loops. JM binds to Nck1-2 with an affinity of approximately 80 microM through a positively charged sequence near the N-terminus, as opposed to the polyproline sequence. The two Nck SH3 domains exhibit both steric and electrostatic differences in their RT-Src and n-Src loops, and a model of the Nck1-2 domain complexed with the JM highlights the factors that define the putative binding mode for this ligand.


Molecules | 2010

Receptor-Based Virtual Screening of EGFR Kinase Inhibitors from the NCI Diversity Database

Kiattawee Choowongkomon; Orathai Sawatdichaikul; Napat Songtawee; Jumras Limtrakul

Epidermal growth factor receptor (EGFR) abnormalities have been associated with several types of human cancer. The crystal structures of its tyrosine kinase domain (EGFR-TK) complexed with small molecule inhibitors revealed the kinase inhibition modes, prompting us to search for novel anti-cancer drugs. A total of 1,990 compounds from the National Cancer Institute (NCI) diversity set with nonredundant structures have been tested to inhibit cancer cell lines with unknown mechanism. Cancer inhibition through EGFR-TK is one of the mechanisms of these compounds. In this work, we performed receptor-based virtual screening against the NCI diversity database. Using two different docking algorithms, AutoDock and Gold, combined with subsequent post-docking analyses, we found eight candidate compounds with high scoring functions that all bind to the ATP-competitive site of the kinase. None of these compounds belongs to the main group of the currently known EGFR-TK inhibitors. Binding mode analyses revealed that the way these compounds complexed with EGFR-TK differs from quinazoline inhibitor binding and the interaction mainly involves hydrophobic interactions. Also, the common kinase-inhibitor (NH---N and CO---HC) hydrogen bonds between the hinge region and the hit compounds are rarely observed. Our results suggest that these molecules could be developed as novel lead compounds in anti-cancer drug design.


Journal of Agricultural and Food Chemistry | 2010

Biochemical Characterization of the α-Amylase Inhibitor in Mungbeans and Its Application in Inhibiting the Growth of Callosobruchus maculatus

Anussorn Wisessing; Arunee Engkagul; Arunee Wongpiyasatid; Kiattawee Choowongkomon

The insect Callosobruchus maculatus causes considerable damage to harvested mungbean seeds every year, which leads to commercial losses. However, recent studies have revealed that mungbean seeds contain alpha-amylase inhibitors that can inhibit the protein C. maculatus, preventing growth and development of the insect larvae in the seed, thus preventing further damage. For this reason, the use of alpha-amylase inhibitors to interfere with the pests digestion process has become an interesting alternative biocontrolling agent. In this study, we have isolated and purified the alpha-amylase inhibitor from mungbean seeds (KPS1) using ammonium sulfate precipitation, gel filtration chromatography and reversed phase HPLC. We found that the alpha-amylase inhibitor, isolated as a monomer, had a molecular weight of 27 kDa. The alpha-amylase inhibitor was purified 750-fold with a final yield of 0.4 mg of protein per 30 g of mungbean seeds. Its specific activity was determined at 14.5 U (mg of protein)(-1). Interestingly, we found that the isolated alpha-amylase inhibitor inhibits C. maculatus alpha-amylase but not human salivary alpha-amylase. After preincubation of the enzyme with the inhibitor, the mungbean alpha-amylase inhibitor inhibited C. maculatus alpha-amylase activity by decreasing V(max) while increasing the K(m) constant, indicating that the mungbean alpha-amylase is a mix noncompetitive inhibitor. The in vivo effect of alpha-amylase inhibitor on the mortality of C. maculatus shows that the alpha-amylase inhibitor acts on C. maculatus during the development stage, by reducing carbohydrate digestion necessary for growth and development, rather than during the end laying/hatching stage. Our results suggest that mungbean alpha-amylase inhibitor could be a useful future biocontrolling agent.


Theoretical and Applied Genetics | 2012

A PCR-based marker for a locus conferring the aroma in Myanmar rice (Oryza sativa L.)

Khin Myo Myint; Siwaret Arikit; Samart Wanchana; Tadashi Yoshihashi; Kiattawee Choowongkomon; Apichart Vanavichit

Aromatic rice is an important commodity for international trade, which has encouraged the interest of rice breeders to identify the genetic control of rice aroma. The recessive Os2AP gene, which is located on chromosome 8, has been reported to be associated with rice aroma. The 8-bp deletion in exon 7 is an aromatic allele that is present in most aromatic accessions, including the most popular aromatic rice varieties, Jasmine and Basmati. However, other mutations associated with aroma have been detected, but the other mutations are less frequent. In this study, we report an aromatic allele, a 3-bp insertion in exon 13 of Os2AP, as a major allele found in aromatic rice varieties from Myanmar. The insertion is in frame and causes an additional tyrosine (Y) in the amino acid sequence. However, the mutation does not affect the expression of the Os2AP gene. A functional marker for detecting this allele was developed and tested in an aroma-segregating F2 population. The aroma phenotypes and genotypes showed perfect co-segregation of this population. The marker was also used for screening a collection of aromatic rice varieties collected from different geographical sites of Myanmar. Twice as many aromatic Myanmar rice varieties containing the 3-bp insertion allele were found as the varieties containing the 8-bp deletion allele, which suggested that the 3-bp insertion allele originated in regions of Myanmar.


Molecules | 2014

Antibacterial and EGFR-tyrosine kinase inhibitory activities of polyhydroxylated xanthones from Garcinia succifolia.

Susawat Duangsrisai; Kiattawee Choowongkomon; Lucinda J. Bessa; Paulo Martins da Costa; Nurmuhammat Amat; Anake Kijjoa

Chemical investigation of the methanol extract of the wood of Garcinia succifolia Kurz (Clusiaceae) led to the isolation of 1,5-dihydroxyxanthone (1), 1,7-dihydroxyxanthone (2), 1,3,7-trihydroxyxanthone (3), 1,5,6-trihydroxyxanthone (4), 1,6,7-trihydroxyxanthone (5), and 1,3,6,7-tetrahydroxyxanthone (6). All of the isolated xanthones were evaluated for their antibacterial activity against bacterial reference strains, two Gram-positive (Staphylococcus aureus ATTC 25923, Bacillus subtillis ATCC 6633) and two Gram-negative (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853), and environmental drug-resistant isolates (S. aureus B1, Enteroccoccus faecalis W1, and E. coli G1), as well as for their epidermal growth factor receptor (EGFR) of tyrosine kinase inhibitory activity. Only 1,5,6-trihydroxy-(4), 1,6,7-trihydroxy-(5), and 1,3,6,7-tetrahydroxyxanthones (6) exhibited antibacterial activity against Gram-positive bacteria, however none was active against vancomycin-resistant E. faecalis. Additionally, 1,7-dihydroxyxanthone (2) showed synergism with oxacillin, but not with ampicillin. On the other hand, only 1,5-dihydroxyxanthone (1) and 1,7-dihydroxyxanthone (2) were found to exhibit the EGFR-tyrosine kinase inhibitory activity, with IC50 values of 90.34 and 223 nM, respectively.


Journal of Molecular Modeling | 2013

Computational study of EGFR inhibition: molecular dynamics studies on the active and inactive protein conformations

Napat Songtawee; M. Paul Gleeson; Kiattawee Choowongkomon

The structural diversity observed across protein kinases, resulting in subtly different active site cavities, is highly desirable in the pursuit of selective inhibitors, yet it can also be a hindrance from a structure-based design perspective. An important challenge in structure-based design is to better understand the dynamic nature of protein kinases and the underlying reasons for specific conformational preferences in the presence of different inhibitors. To investigate this issue, we performed molecular dynamics simulation on both the active and inactive wild type epidermal growth factor receptor (EGFR) protein with both type-I and type-II inhibitors. Our goal is to better understand the origin of the two distinct EGFR protein conformations, their dynamic differences, and their relative preference for Type-I inhibitors such as gefitinib and Type-II inhibitors such as lapatinib. We discuss the implications of protein dynamics from a structure-based design perspective.


Protein Journal | 2011

Biochemical and Enzymatic Study of Rice BADH Wild-Type and Mutants: An Insight into Fragrance in Rice

Ratree Wongpanya; Nonlawat Boonyalai; Napaporn Thammachuchourat; Natharinee Horata; Siwaret Arikit; Khin Myo Myint; Apichart Vanavichit; Kiattawee Choowongkomon

Betaine aldehyde dehydrogenase 2 (BADH2) is believed to be involved in the accumulation of 2-acetyl-1-pyrroline (2AP), one of the major aromatic compounds in fragrant rice. The enzyme can oxidize ω-aminoaldehydes to the corresponding ω-amino acids. This study was carried out to investigate the function of wild-type BADHs and four BADH2 mutants: BADH2_Y420, containing a Y420 insertion similar to BADH2.8 in Myanmar fragrance rice, BADH2_C294A, BADH2_E260A and BADH2_N162A, consisting of a single catalytic-residue mutation. Our results showed that the BADH2_Y420 mutant exhibited less catalytic efficiency towards γ-aminobutyraldehyde but greater efficiency towards betaine aldehyde than wild-type. We hypothesized that this point mutation may account for the accumulation of γ-aminobutyraldehyde/Δ1-pyrroline prior to conversion to 2AP, generating fragrance in Myanmar rice. In addition, the three catalytic-residue mutants confirmed that residues C294, E260 and N162 were involved in the catalytic activity of BADH2 similar to those of other BADHs.


Antiviral Research | 2013

Human monoclonal ScFv specific to NS1 protein inhibits replication of influenza viruses across types and subtypes

Rungrueang Yodsheewan; Santi Maneewatch; Potjanee Srimanote; Kanyarat Thueng-in; Thaweesak Songserm; Fonthip Dong-din-on; Kunan Bangphoomi; Nitat Sookrung; Kiattawee Choowongkomon; Wanpen Chaicumpa

Currently, there is a need of new anti-influenza agents that target influenza virus proteins other than ion channel M2 and neuraminidase. Non-structural protein-1 (NS1) is a highly conserved multifunctional protein which is indispensable for the virus replication cycle. In this study, fully human single chain antibody fragments (HuScFv) that bound specifically to recombinant and native NS1 were produced from three huscfv-phagemid transformed Escherichia coli clones (nos. 3, 10 and 11) selected from a human ScFv phage display library. Western blot analysis, mimotope searching/epitope identification, homology modeling/molecular docking and phage mimotope ELISA inhibition indicated that HuScFv of clone no. 3 reacted with NS1 R domain important for host innate immunity suppression; HuScFv of clone nos. 10 and 11 bound to E domain sites necessary for NS1 binding to the host eIF4GI and CPSF30, respectively. The HuScFv of all clones could enter the influenza virus infected cells and interfered with the NS1 activities leading to replication inhibition of viruses belonging to various heterologous A subtypes and type B by 2-64-fold as semi-quantified by hemagglutination assay. Influenza virus infected cells treated with representative HuScFv (clone 10) had up-expression of IRF3 and IFN-β genes by 14.75 and 4.95-fold, respectively, in comparison with the controls, indicating that the antibodies could restore the host innate immune response. The fully human single chain antibodies have high potential for developing further as a safe (adjunctive) therapeutic agent for mitigating, if not abrogating, severe symptoms of influenza.

Collaboration


Dive into the Kiattawee Choowongkomon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natharinee Horata

Huachiew Chalermprakiet University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge