Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kihoon Kim is active.

Publication


Featured researches published by Kihoon Kim.


Journal of Biological Chemistry | 2002

In Vitro Selection of External Guide Sequences for Directing RNase P-mediated Inhibition of Viral Gene Expression

Tianhong Zhou; Joseph Kim; Ahmed F. Kilani; Kihoon Kim; Walter Dunn; Solomon Jo; Edward Nepomuceno; Fenyong Liu

External guide sequences (EGSs) are small RNA molecules that bind to a target mRNA, form a complex resembling the structure of a tRNA, and render the mRNA susceptible to hydrolysis by RNase P, a tRNA processing enzyme. An in vitro selection procedure was used to select EGSs that direct human RNase P to cleave the mRNA encoding thymidine kinase (TK) of herpes simplex virus 1. One of the selected EGSs, TK17, was at least 35 times more active in directing RNase P in cleaving TK mRNAin vitro than the EGS derived from a natural tRNA sequence. TK17, when in complex with the TK mRNA sequence, resembles a portion of tRNA structure and exhibits an enhanced binding affinity to the target mRNA. Moreover, a reduction of 95 and 50% in the TK expression was found in herpes simplex virus 1-infected cells that expressed the selected EGS and the EGS derived from the natural tRNA sequence, respectively. Our study provides direct evidence that EGS molecules isolated by the selection procedure are effective in tissue culture. These results also demonstrate the potential for using the selection procedure as a general approach for the generation of highly effective EGSs for gene-targeting application.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Effective inhibition in animals of viral pathogenesis by a ribozyme derived from RNase P catalytic RNA

Yong Bai; Phong Trang; Hongjian Li; Kihoon Kim; Tianhong Zhou; Fenyong Liu

A functional RNase P ribozyme (M1GS RNA) was constructed to target the overlapping mRNA region of two murine cytomegalovirus (MCMV) capsid proteins essential for viral replication: the assembly protein (mAP) and M80. The customized ribozyme efficiently cleaved the target mRNA sequence in vitro. Moreover, 80% reduction in the expression of mAP and M80 and a 2,000-fold reduction in viral growth were observed in cells expressing the ribozyme. In contrast, there was no significant reduction in viral gene expression and growth in cells that either did not express the ribozyme or produced a “disabled” ribozyme carrying mutations that abolished its catalytic activity. When the ribozyme-expressing constructs were delivered into MCMV-infected SCID mice via a modified “hydrodynamic transfection” procedure, expression of ribozymes was observed in the livers and spleens. Compared with the control animals that did not receive any M1GS constructs or received the disabled ribozyme construct, animals receiving the functional ribozyme construct exhibited a significant reduction of viral gene expression and infection. Viral titers in the spleens, livers, lungs, and salivary glands of the functional ribozyme-treated SCID mice at 21 days after infection were 200- to 2,000-fold lower than those in the control animals. Moreover, survival of the infected animals significantly improved upon receiving the functional ribozyme construct. Our study examines the use of M1GS ribozymes for inhibition of gene expression in animals and demonstrates the utility of RNase P ribozymes for gene targeting applications in vivo.


Cellular Microbiology | 2004

Developing RNase P ribozymes for gene‐targeting and antiviral therapy

Phong Trang; Kihoon Kim; Fenyong Liu

RNase P, a tRNA processing enzyme, contains both RNA and protein subunits. M1 RNA, the catalytic RNA subunit of RNase P from Escherichia coli, recognizes its target RNA substrate mainly on the basis of its structure and cleaves a double stranded RNA helix at the 5′ end that resembles the acceptor stem and T‐stem structure of its natural tRNA substrate. Accordingly, a guide sequence (GS) can be covalently attached to the M1 RNA to generate a sequence specific ribozyme, M1GS RNA. M1GS ribozyme can target any mRNA sequence of choice that is complementary to its guide sequence. Recent studies have shown that M1GS ribozymes efficiently cleave the mRNAs of herpes simplex virus 1 and human cytomegalovirus, and the BCR‐ABL oncogenic mRNA in vitro and effectively reduce the expression of these mRNAs in cultured cells. Moreover, an in vitro selection scheme has been developed to select for M1 GS ribozyme variants with more efficient catalytic activity in cleaving mRNAs. When expressed in cultured cells, these selected ribozymes also show an enhance ability to inhibit viral gene expression and growth. These recent results demonstrate the feasibility of developing the M1GS ribozyme‐based technology as a promising gene targeting approach for basic research and clinical therapeutic application.


BMC Microbiology | 2010

Mass spectrometry-based quantitative proteomic analysis of Salmonella enterica serovar Enteritidis protein expression upon exposure to hydrogen peroxide.

Kihoon Kim; Edward Z. Yang; Gia-Phong Vu; Hao Gong; Jing Su; Fenyong Liu; Sangwei Lu

BackgroundSalmonellaenterica, a common food-borne bacterial pathogen, is believed to change its protein expression profile in the presence of different environmental stress such as that caused by the exposure to hydrogen peroxide (H2O2), which can be generated by phagocytes during infection and represents an important antibacterial mechanism of host cells. Among Salmonella proteins, the effectors of Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) are of particular interest since they are expressed during host infection in vivo and are important for invasion of epithelial cells and for replication in organs during systemic infection, respectively. However, the expression profiles of these proteins upon exposure to H2O2 or to host cells in vivo during the established phase of systemic infection have not been extensively studied.ResultsUsing stable isotope labeling coupled with mass spectrometry, we performed quantitative proteomic analysis of Salmonellaenterica serovar Enteritidis and identified 76 proteins whose expression is modulated upon exposure to H2O2. SPI-1 effector SipC was expressed about 3-fold higher and SopB was expressed approximately 2-fold lower in the presence of H2O2, while no significant change in the expression of another SPI-1 protein SipA was observed. The relative abundance of SipA, SipC, and SopB was confirmed by Western analyses, validating the accuracy and reproducibility of our approach for quantitative analysis of protein expression. Furthermore, immuno-detection showed substantial expression of SipA and SipC but not SopB in the late phase of infection in macrophages and in the spleen of infected mice.ConclusionsWe have identified Salmonella proteins whose expression is modulated in the presence of H2O2. Our results also provide the first direct evidence that SipC is highly expressed in the spleen at late stage of salmonellosis in vivo. These results suggest a possible role of SipC and other regulated proteins in supporting survival and replication of Salmonella under oxidative stress and during its systemic infection in vivo.


BMC Microbiology | 2009

Characterization of the expression of Salmonella Type III secretion system factor PrgI, SipA, SipB, SopE2, SpaO, and SptP in cultures and in mice

Hao Gong; Jing Su; Yong Bai; Lu Miao; Kihoon Kim; Yonghua Yang; Fenyong Liu; Sangwei Lu

BackgroundThe type III secretion systems (T3SSs) encoded by Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) are important for invasion of epithelial cells during development of Salmonella-associated enterocolitis and for replication in macrophages during systemic infection, respectively. In vitro studies have previously revealed hierarchical transport of different SPI-1 factors and ordered synergistic/antagonistic relationships between these proteins during Salmonella entry. These results suggest that the level and timing of the expression of these proteins dictate the consequences of bacterial infection and pathogenesis. However, the expression of these proteins has not been extensively studied in vivo, especially during the later stages of salmonellosis when the infection is established.ResultsIn this study, we have constructed bacterial strains that contain a FLAG epitope inserted in frame to SPI-1 genes prgI, sipA, sipB, sopE2, spaO, and sptP, and investigated the expression of the tagged proteins both in vitro and in vivo during murine salmonellosis. The tagged Salmonella strains were inoculated intraperitoneally or intragastrically into mice and recovered from various organs. Our results provide direct evidence that PrgI and SipB are expressed in Salmonella colonizing the spleen and cecum of the infected animals at early and late stages of infection. Furthermore, this study demonstrates that the SpaO protein is expressed preferably in Salmonella colonizing the cecum but not the spleen and that SptP is expressed preferably in Salmonella colonizing the spleen but not the cecum.ConclusionThese results suggest that Salmonella may express different SPI-1 proteins when they colonize specific tissues and that differential expression of these proteins may be important for tissue-specific aspects of bacterial pathogenesis such as gastroenterititis in the cecum and systemic infection in the spleen.


Nucleic Acids Research | 2006

Engineered external guide sequences are highly effective in inducing RNase P for inhibition of gene expression and replication of human cytomegalovirus

Yonghua Yang; Hongjian Li; Tianhong Zhou; Kihoon Kim; Fenyong Liu

External guide sequences (EGSs), which are RNA molecules derived from natural tRNAs, bind to a target mRNA and render the mRNA susceptible to hydrolysis by RNase P, a tRNA processing enzyme. Using an in vitro selection procedure, we have previously generated EGS variants that efficiently direct human RNase P to cleave a target mRNA in vitro. In this study, a variant was used to target the overlapping region of the mRNAs encoding human cytomegalovirus (HCMV) essential transcription regulatory factors IE1 and IE2. The EGS variant was ∼25-fold more active in inducing human RNase P to cleave the mRNA in vitro than the EGS derived from a natural tRNA. Moreover, a reduction of 93% in IE1/IE2 gene expression and a reduction of 3000-fold in viral growth were observed in HCMV-infected cells that expressed the variant, while cells expressing the tRNA-derived EGS exhibited a reduction of 80% in IE1/IE2 expression and an inhibition of 150-fold in viral growth. Our results provide the first direct evidence that EGS variant is highly effective in blocking HCMV gene expression and growth and furthermore, demonstrate the feasibility of developing effective EGS RNA variants for anti-HCMV applications by using in vitro selection procedures.


Journal of Molecular Biology | 2003

Expression of an RNase P Ribozyme Against the mRNA Encoding Human Cytomegalovirus Protease Inhibits Viral Capsid Protein Processing and Growth

Phong Trang; Kihoon Kim; Jiaming Zhu; Fenyong Liu

A sequence-specific ribozyme (M1GS RNA) derived from the catalytic RNA subunit of RNase P from Escherichia coli was used to target the mRNA encoding human cytomegalovirus (HCMV) protease (PR), a viral protein that is responsible for the processing of the viral capsid assembly protein. We showed that the constructed ribozyme cleaved the PR mRNA sequence efficiently in vitro. Moreover, a reduction of about 80% in the expression level of the protease and a reduction of about 100-fold in HCMV growth were observed in cells that expressed the ribozyme stably. In contrast, a reduction of less than 10% in the expression of viral protease and viral growth was observed in cells that either did not express the ribozyme or produced a catalytically inactive ribozyme mutant. Further examination of the antiviral effects of the ribozyme-mediated cleavage of PR mRNA indicates that (1) the proteolytic cleavage of the capsid assembly protein is inhibited significantly, and (2) the packaging of the viral genomic DNA into the CMV capsids is blocked. These observations are consistent with the notion that the protease functions to process the capsid assembly protein and is essential for viral capsid assembly. Moreover, our results indicate that the RNase P ribozyme-mediated cleavage specifically reduces the expression of the protease, but not other viral genes examined. Thus, M1GS ribozyme is highly effective in inhibiting HCMV growth by targeting the PR mRNA and may represent a novel class of general gene-targeting agents for the studies and treatment of infections caused by human viruses, including HCMV.


Journal of Clinical Virology | 2002

RNase P ribozymes for the studies and treatment of human cytomegalovirus infections

Phong Trang; Ahmed F. Kilani; Jarone Lee; Amy W. Hsu; Kwa Liou; Joe Kim; Arash Nassi; Kihoon Kim; Fenyong Liu

Ribozymes are promising gene-targeting agents for regulation of gene expression. In our recent studies, RnaseP (M1GS) ribozymes were constructed to target the overlapping region (IE mRNA) of IE1 and IE2 mRNAs of human cytomegalovirus (HCMV) and the mRNA (TK mRNA) coding for thymidine kinase (TK) of herpes simplex virus 1 (HSV-1). Our results indicate that RNase P ribozymes efficiently cleaved the IE mRNA and TK mRNA sequences in vitro. Significant inhibitions (approximately 75-85%) of HCMV IE1/IE2 and HSV-1 TK expression were observed in cells that expressed these ribozymes while a reduction of less than 10% was found in cells that did not express the ribozymes or expressed a disabled one that contained mutations abolishing catalytic activity. Ribozyme variants, which cleaved a TK mRNA sequence in vitro more efficiently than the ribozyme derived from the wildtype RNase P sequence, were selected by an in vitro selection system. When the selected ribozymes were expressed in cultured cells, they were more effective in inhibiting viral IE1/IE2 and TK expression and viral growth than the wildtype ribozyme sequence. Our results provide the first direct evidence that RNase P ribozymes are highly effective in inhibiting HCMV gene expression and growth. Moreover, a selection system was developed for generating novel ribozyme variants that cleave a mRNA substrate efficiently in vitro. These results suggest that M1GS ribozyme-mediated inhibition of expression of viral genes can be used as a new approach for the studies of HCMV gene function and the treatment of HCMV infection.


Journal of Biological Chemistry | 2011

Engineered External Guide Sequences Effectively Block Viral Gene Expression and Replication in Cultured Cells

Xiaohong Jiang; Yong Bai; Paul Rider; Kihoon Kim; Chen-Yu Zhang; Sangwei Lu; Fenyong Liu

Ribonuclease P (RNase P) complexed with external guide sequence (EGS) represents a novel nucleic acid-based gene interference approach to modulate gene expression. We have previously used an in vitro selection procedure to generate EGS variants that efficiently direct human RNase P to cleave a target mRNA in vitro. In this study, a variant was used to target the mRNA encoding the protease of human cytomegalovirus (HCMV), which is essential for viral capsid formation and replication. The EGS variant was about 35-fold more active in inducing human RNase P to cleave the mRNA in vitro than the EGS derived from a natural tRNA. Moreover, a reduction of 95% in the expression of the protease and a reduction of 4,000-fold in viral growth were observed in HCMV-infected cells that expressed the EGS variant, whereas a reduction of 80% in the protease expression and an inhibition of 150-fold in viral growth were detected in cells that expressed the EGS derived from a natural tRNA sequence. No significant reduction in viral protease expression or viral growth was observed in cells that either did not express an EGS or produced a “disabled” EGS, which carried nucleotide mutations that precluded RNase P recognition. Our results provide direct evidence that engineered EGS variant is highly effective in blocking HCMV expression and growth by targeting the viral protease. Furthermore, these results demonstrate the utility of engineered EGS RNAs in gene targeting applications, including the inhibition of HCMV infection by blocking the expression of virus-encoded essential proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Effective inhibition of Rta expression and lytic replication of Kaposi's sarcoma-associated herpesvirus by human RNase P

Jiaming Zhu; Phong Trang; Kihoon Kim; Tianhong Zhou; Hongyu Deng; Fenyong Liu

Collaboration


Dive into the Kihoon Kim's collaboration.

Top Co-Authors

Avatar

Fenyong Liu

University of California

View shared research outputs
Top Co-Authors

Avatar

Phong Trang

University of California

View shared research outputs
Top Co-Authors

Avatar

Tianhong Zhou

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongjian Li

University of California

View shared research outputs
Top Co-Authors

Avatar

Sangwei Lu

University of California

View shared research outputs
Top Co-Authors

Avatar

Sean Umamoto

University of California

View shared research outputs
Top Co-Authors

Avatar

Yong Bai

University of California

View shared research outputs
Top Co-Authors

Avatar

Hao Gong

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge