Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phong Trang is active.

Publication


Featured researches published by Phong Trang.


Cellular Microbiology | 2005

Human cytomegalovirus expresses novel microRNAs during productive viral infection

Walter Dunn; Phong Trang; Qiu Zhong; Edward Z. Yang; Christopher van Belle; Fenyong Liu

MicroRNAs (miRNAs) are a large class of ∼22‐nucleotide non‐coding RNAs that facilitate mRNA cleavage and translation repression through the RNA interference pathway. Until recently, miRNAs have been exclusively found in eukaryotic organisms. A non‐immunogenic molecule requiring minimal genomic investment, these RNAs may offer an efficient means for viruses to modulate both their own and the hosts gene expression during a productive viral infection. In this study we report that human cytomegalovirus (HCMV) expresses miRNAs during its productive lytic infection of four clinically relevant human cell types: fibroblast, endothelial, epithelial and astrocyte cells. The sequences of the miRNAs, expressed from the UL23 and US24 loci of the viral genome, were conserved among all HCMV strains examined and in chimpanzee cytomegalovirus. Furthermore, their expression was detected from both a laboratory‐adapted strain and a clinical isolate of HCMV. The conservation of these miRNAs and their expression in different cell types suggests that they represent an evolutionarily primitive feature in the viral genome, and that virus‐encoded miRNAs may be more common than previously believed.


Proceedings of the National Academy of Sciences of the United States of America | 2001

RNase P-mediated inhibition of cytomegalovirus protease expression and viral DNA encapsidation by oligonucleotide external guide sequences

Walter Dunn; Phong Trang; Umair Khan; Jiaming Zhu; Fenyong Liu

External guide sequences (EGSs) are oligonucleotides that consist of a sequence complementary to a target mRNA and recruit intracellular RNase P for specific degradation of the target RNA. In this study, DNA-based EGS molecules were chemically synthesized to target the mRNA coding for the protease of human cytomegalovirus (HCMV). The EGS molecules efficiently directed human RNase P to cleave the target mRNA sequence in vitro. When EGSs were exogenously administered into HCMV-infected human foreskin fibroblasts, a reduction of about 80–90% in the expression level of the protease and a reduction of about 300-fold in HCMV growth were observed in the cells that were treated with a functional EGS, but not in cells that were not treated with the EGS or with a “disabled” EGS carrying nucleotide mutations that precluded RNase P recognition. Moreover, packaging of the viral DNA genome into the capsid was blocked in the cells treated with the functional EGS. These results indicate that HCMV protease is essential for viral DNA encapsidation. Moreover, our study provides direct evidence that exogenous administration of a DNA-based EGS can be used as a therapeutic approach for inhibiting gene expression and replication of a human virus.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Effective inhibition in animals of viral pathogenesis by a ribozyme derived from RNase P catalytic RNA

Yong Bai; Phong Trang; Hongjian Li; Kihoon Kim; Tianhong Zhou; Fenyong Liu

A functional RNase P ribozyme (M1GS RNA) was constructed to target the overlapping mRNA region of two murine cytomegalovirus (MCMV) capsid proteins essential for viral replication: the assembly protein (mAP) and M80. The customized ribozyme efficiently cleaved the target mRNA sequence in vitro. Moreover, 80% reduction in the expression of mAP and M80 and a 2,000-fold reduction in viral growth were observed in cells expressing the ribozyme. In contrast, there was no significant reduction in viral gene expression and growth in cells that either did not express the ribozyme or produced a “disabled” ribozyme carrying mutations that abolished its catalytic activity. When the ribozyme-expressing constructs were delivered into MCMV-infected SCID mice via a modified “hydrodynamic transfection” procedure, expression of ribozymes was observed in the livers and spleens. Compared with the control animals that did not receive any M1GS constructs or received the disabled ribozyme construct, animals receiving the functional ribozyme construct exhibited a significant reduction of viral gene expression and infection. Viral titers in the spleens, livers, lungs, and salivary glands of the functional ribozyme-treated SCID mice at 21 days after infection were 200- to 2,000-fold lower than those in the control animals. Moreover, survival of the infected animals significantly improved upon receiving the functional ribozyme construct. Our study examines the use of M1GS ribozymes for inhibition of gene expression in animals and demonstrates the utility of RNase P ribozymes for gene targeting applications in vivo.


Cellular Microbiology | 2004

Developing RNase P ribozymes for gene‐targeting and antiviral therapy

Phong Trang; Kihoon Kim; Fenyong Liu

RNase P, a tRNA processing enzyme, contains both RNA and protein subunits. M1 RNA, the catalytic RNA subunit of RNase P from Escherichia coli, recognizes its target RNA substrate mainly on the basis of its structure and cleaves a double stranded RNA helix at the 5′ end that resembles the acceptor stem and T‐stem structure of its natural tRNA substrate. Accordingly, a guide sequence (GS) can be covalently attached to the M1 RNA to generate a sequence specific ribozyme, M1GS RNA. M1GS ribozyme can target any mRNA sequence of choice that is complementary to its guide sequence. Recent studies have shown that M1GS ribozymes efficiently cleave the mRNAs of herpes simplex virus 1 and human cytomegalovirus, and the BCR‐ABL oncogenic mRNA in vitro and effectively reduce the expression of these mRNAs in cultured cells. Moreover, an in vitro selection scheme has been developed to select for M1 GS ribozyme variants with more efficient catalytic activity in cleaving mRNAs. When expressed in cultured cells, these selected ribozymes also show an enhance ability to inhibit viral gene expression and growth. These recent results demonstrate the feasibility of developing the M1GS ribozyme‐based technology as a promising gene targeting approach for basic research and clinical therapeutic application.


Molecular Therapy | 2013

Inhibition of Hepatitis B Virus Gene Expression and Replication by Ribonuclease P

Chuan Xia; Yuan-Chuan Chen; Hao Gong; Wenbo Zeng; Gia-Phong Vu; Phong Trang; Sangwei Lu; Jianguo Wu; Fenyong Liu

Nucleic acid-based gene interfering approaches, such as those mediated by RNA interference and RNase P-associated external guide sequence (EGS), have emerged as promising antiviral strategies. The RNase P-based technology is unique, because a custom-designed EGS can bind to any complementary mRNA sequence and recruit intracellular RNase P for specific degradation of the target mRNA. In this study, a functional EGS was constructed to target hepatitis B virus (HBV) essential transcripts. Furthermore, an attenuated Salmonella strain was constructed and used for delivery of anti-HBV EGS in cells and in mice. Substantial reduction in the levels of HBV gene expression and viral DNA was detected in cells treated with the Salmonella vector carrying the functional EGS construct. Furthermore, oral inoculation of Salmonella carrying the EGS construct led to an inhibition of ~95% in the levels of HBV gene expression and a reduction of ~200,000-fold in viral DNA level in the livers and sera of the treated mice transfected with a HBV plasmid. Our results suggest that EGSs are effective in inhibiting HBV replication in cultured cells and mammalian livers, and demonstrate the use of Salmonella-mediated delivery of EGS as a promising therapeutic approach for human diseases including HBV infection.


Journal of Biological Chemistry | 2003

Engineered RNase P Ribozymes Are Efficient in Cleaving a Human Cytomegalovirus mRNA in Vitro and Are Effective in Inhibiting Viral Gene Expression and Growth in Human Cells

Hua Zou; Jarone Lee; Sean Umamoto; Ahmed F. Kilani; Joseph Kim; Phong Trang; Tianhong Zhou; Fenyong Liu

By using an in vitro selection procedure, we have previously isolated RNase P ribozyme variants that efficiently cleave an mRNA sequence in vitro. In this study, a ribozyme variant was used to target the overlapping region of the mRNAs encoding human cytomegalovirus (HCMV) major transcription regulatory proteins IE1 and IE2. The variant is about 90 times more efficient in cleaving the IE1/IE2 mRNA sequence in vitro than the ribozyme derived from the wild type RNase P ribozyme. Our results provide the first direct evidence that a point mutation at nucleotide position 80 of RNase P catalytic RNA from Escherichia coli (U80→ C80) increases the rate of chemical cleavage, and another mutation at nucleotide position 188 (C188→ U188) enhances substrate binding of the ribozyme. Moreover, the variant is more effective in inhibiting viral IE1 and IE2 expression and growth in HCMV-infected cells than the wild type ribozyme. A reduction of about 99% in the expression level of IE1 and IE2 and a reduction of 10,000-fold in viral growth were observed in cells that expressed the variant. In contrast, a reduction of less than 10% in IE1/IE2 expression and viral growth was observed in cells that either did not express the ribozyme or produced a catalytically inactive ribozyme mutant. Thus, engineered RNase P ribozyme variants are highly effective in inhibiting HCMV gene expression and growth. These results also demonstrate the feasibility of engineering highly effective RNase P ribozymes for gene targeting applications, including anti-HCMV gene therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Effective inhibition of cytomegalovirus infection by external guide sequences in mice

Xiaohong Jiang; Hao Gong; Yuan-Chuan Chen; Gia-Phong Vu; Phong Trang; Chen-Yu Zhang; Sangwei Lu; Fenyong Liu

Ribonuclease P complexed with external guide sequence (EGS) bound to mRNA represents a unique nucleic acid-based gene interference approach for modulation of gene expression. Compared with other strategies, such as RNA interference, the EGS-based technology is unique because a custom-designed EGS molecule can hybridize with any mRNA and recruit intracellular ribonuclease P for specific degradation of the target mRNA. It has not been reported whether the EGS-based technology can modulate gene expression in mice. In this study, a functional EGS was constructed to target the mRNA encoding the protease (mPR) of murine cytomegalovirus (MCMV), which is essential for viral replication. Furthermore, a unique attenuated strain of Salmonella was generated for gene delivery of EGS in cultured cells and in mice. Efficient expression of EGS was observed in cultured cells treated with the generated Salmonella vector carrying constructs with the EGS expression cassette. Moreover, a significant reduction in mPR expression and viral growth was found in MCMV-infected cells treated with Salmonella carrying the construct with the functional EGS sequence. When MCMV-infected mice were orally treated with Salmonella carrying EGS expression cassettes, viral gene expression and growth in various organs of these animals were reduced and animal survival improved. Our study suggests that EGS RNAs, when expressed following Salmonella-mediated gene transfer, effectively inhibit viral gene expression and infection in mice. Furthermore, these results demonstrate the feasibility of developing Salmonella-mediated delivery of EGS as a unique approach for treatment that reduces viral diseases in vivo.


Journal of Molecular Biology | 2003

Expression of an RNase P Ribozyme Against the mRNA Encoding Human Cytomegalovirus Protease Inhibits Viral Capsid Protein Processing and Growth

Phong Trang; Kihoon Kim; Jiaming Zhu; Fenyong Liu

A sequence-specific ribozyme (M1GS RNA) derived from the catalytic RNA subunit of RNase P from Escherichia coli was used to target the mRNA encoding human cytomegalovirus (HCMV) protease (PR), a viral protein that is responsible for the processing of the viral capsid assembly protein. We showed that the constructed ribozyme cleaved the PR mRNA sequence efficiently in vitro. Moreover, a reduction of about 80% in the expression level of the protease and a reduction of about 100-fold in HCMV growth were observed in cells that expressed the ribozyme stably. In contrast, a reduction of less than 10% in the expression of viral protease and viral growth was observed in cells that either did not express the ribozyme or produced a catalytically inactive ribozyme mutant. Further examination of the antiviral effects of the ribozyme-mediated cleavage of PR mRNA indicates that (1) the proteolytic cleavage of the capsid assembly protein is inhibited significantly, and (2) the packaging of the viral genomic DNA into the CMV capsids is blocked. These observations are consistent with the notion that the protease functions to process the capsid assembly protein and is essential for viral capsid assembly. Moreover, our results indicate that the RNase P ribozyme-mediated cleavage specifically reduces the expression of the protease, but not other viral genes examined. Thus, M1GS ribozyme is highly effective in inhibiting HCMV growth by targeting the PR mRNA and may represent a novel class of general gene-targeting agents for the studies and treatment of infections caused by human viruses, including HCMV.


Journal of Clinical Virology | 2002

RNase P ribozymes for the studies and treatment of human cytomegalovirus infections

Phong Trang; Ahmed F. Kilani; Jarone Lee; Amy W. Hsu; Kwa Liou; Joe Kim; Arash Nassi; Kihoon Kim; Fenyong Liu

Ribozymes are promising gene-targeting agents for regulation of gene expression. In our recent studies, RnaseP (M1GS) ribozymes were constructed to target the overlapping region (IE mRNA) of IE1 and IE2 mRNAs of human cytomegalovirus (HCMV) and the mRNA (TK mRNA) coding for thymidine kinase (TK) of herpes simplex virus 1 (HSV-1). Our results indicate that RNase P ribozymes efficiently cleaved the IE mRNA and TK mRNA sequences in vitro. Significant inhibitions (approximately 75-85%) of HCMV IE1/IE2 and HSV-1 TK expression were observed in cells that expressed these ribozymes while a reduction of less than 10% was found in cells that did not express the ribozymes or expressed a disabled one that contained mutations abolishing catalytic activity. Ribozyme variants, which cleaved a TK mRNA sequence in vitro more efficiently than the ribozyme derived from the wildtype RNase P sequence, were selected by an in vitro selection system. When the selected ribozymes were expressed in cultured cells, they were more effective in inhibiting viral IE1/IE2 and TK expression and viral growth than the wildtype ribozyme sequence. Our results provide the first direct evidence that RNase P ribozymes are highly effective in inhibiting HCMV gene expression and growth. Moreover, a selection system was developed for generating novel ribozyme variants that cleave a mRNA substrate efficiently in vitro. These results suggest that M1GS ribozyme-mediated inhibition of expression of viral genes can be used as a new approach for the studies of HCMV gene function and the treatment of HCMV infection.


PLOS ONE | 2012

Effective inhibition of human immunodeficiency virus 1 replication by engineered RNase P ribozyme.

Wenbo Zeng; Yuan-Chuan Chen; Yong Bai; Phong Trang; Gia-Phong Vu; Sangwei Lu; Jianguo Wu; Fenyong Liu

Using an in vitro selection procedure, we have previously isolated RNase P ribozyme variants that efficiently cleave an mRNA sequence in vitro. In this study, a variant was used to target the HIV RNA sequence in the tat region. The variant cleaved the tat RNA sequence in vitro about 20 times more efficiently than the wild type ribozyme. Our results provide the first direct evidence that combined mutations at nucleotide 83 and 340 of RNase P catalytic RNA from Escherichia coli (G83 -> U83 and G340 -> A340) increase the overall efficiency of the ribozyme in cleaving an HIV RNA sequence. Moreover, the variant is more effective in reducing HIV-1 p24 expression and intracellular viral RNA level in cells than the wild type ribozyme. A reduction of about 90% in viral RNA level and a reduction of 150 fold in viral growth were observed in cells that expressed the variant, while a reduction of less than 10% was observed in cells that either did not express the ribozyme or produced a catalytically inactive ribozyme mutant. Thus, engineered ribozyme variants are effective in inhibiting HIV infection. These results also demonstrate the potential of engineering RNase P ribozymes for anti-HIV application.

Collaboration


Dive into the Phong Trang's collaboration.

Top Co-Authors

Avatar

Fenyong Liu

University of California

View shared research outputs
Top Co-Authors

Avatar

Kihoon Kim

University of California

View shared research outputs
Top Co-Authors

Avatar

Gia-Phong Vu

University of California

View shared research outputs
Top Co-Authors

Avatar

Sangwei Lu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jingxue Sheng

University of California

View shared research outputs
Top Co-Authors

Avatar

Tianhong Zhou

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge