Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kiichi Watanabe is active.

Publication


Featured researches published by Kiichi Watanabe.


Nature Biotechnology | 2007

A ROCK inhibitor permits survival of dissociated human embryonic stem cells

Kiichi Watanabe; Morio Ueno; Daisuke Kamiya; Ayaka Nishiyama; Michiru Matsumura; Takafumi Wataya; Jun Takahashi; Satomi Nishikawa; Shin-Ichi Nishikawa; Keiko Muguruma; Yoshiki Sasai

Poor survival of human embryonic stem (hES) cells after cell dissociation is an obstacle to research, hindering manipulations such as subcloning. Here we show that application of a selective Rho-associated kinase (ROCK) inhibitor, Y-27632, to hES cells markedly diminishes dissociation-induced apoptosis, increases cloning efficiency (from ∼1% to ∼27%) and facilitates subcloning after gene transfer. Furthermore, dissociated hES cells treated with Y-27632 are protected from apoptosis even in serum-free suspension (SFEB) culture and form floating aggregates. We demonstrate that the protective ability of Y-27632 enables SFEB-cultured hES cells to survive and differentiate into Bf1+ cortical and basal telencephalic progenitors, as do SFEB-cultured mouse ES cells.


Cell Stem Cell | 2008

Self-Organized Formation of Polarized Cortical Tissues from ESCs and Its Active Manipulation by Extrinsic Signals

Mototsugu Eiraku; Kiichi Watanabe; Mami Matsuo-Takasaki; Masako Kawada; Shigenobu Yonemura; Michiru Matsumura; Takafumi Wataya; Ayaka Nishiyama; Keiko Muguruma; Yoshiki Sasai

Here, we demonstrate self-organized formation of apico-basally polarized cortical tissues from ESCs using an efficient three-dimensional aggregation culture (SFEBq culture). The generated cortical neurons are functional, transplantable, and capable of forming proper long-range connections in vivo and in vitro. The regional identity of the generated pallial tissues can be selectively controlled (into olfactory bulb, rostral and caudal cortices, hem, and choroid plexus) by secreted patterning factors such as Fgf, Wnt, and BMP. In addition, the in vivo-mimicking birth order of distinct cortical neurons permits the selective generation of particular layer-specific neurons by timed induction of cell-cycle exit. Importantly, cortical tissues generated from mouse and human ESCs form a self-organized structure that includes four distinct zones (ventricular, early and late cortical-plate, and Cajal-Retzius cell zones) along the apico-basal direction. Thus, spatial and temporal aspects of early corticogenesis are recapitulated and can be manipulated in this ESC culture.


Nature Neuroscience | 2005

Directed differentiation of telencephalic precursors from embryonic stem cells

Kiichi Watanabe; Daisuke Kamiya; Ayaka Nishiyama; Tomoko Katayama; Satoshi Nozaki; Hiroshi Kawasaki; Yasuyoshi Watanabe; Kenji Mizuseki; Yoshiki Sasai

We demonstrate directed differentiation of telencephalic precursors from mouse embryonic stem (ES) cells using optimized serum-free suspension culture (SFEB culture). Treatment with Wnt and Nodal antagonists (Dkk1 and LeftyA) during the first 5 d of SFEB culture causes nearly selective neural differentiation in ES cells (∼90%). In the presence of Dkk1, with or without LeftyA, SFEB induces efficient generation (∼35%) of cells expressing telencephalic marker Bf1. Wnt3a treatment during the late culture period increases the pallial telencephalic population (Pax6+ cells yield up to 75% of Bf1+ cells), whereas Shh promotes basal telencephalic differentiation (into Nkx2.1+ and/or Islet1/2+ cells) at the cost of pallial telencephalic differentiation. Thus, in the absence of caudalizing signals, floating aggregates of ES cells generate naive telencephalic precursors that acquire subregional identities by responding to extracellular patterning signals.


Nature Biotechnology | 2008

Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells.

Fumitaka Osakada; Hanako Ohashi Ikeda; Michiko Mandai; Takafumi Wataya; Kiichi Watanabe; Nagahisa Yoshimura; Akinori Akaike; Yoshiki Sasai; Masayo Takahashi

We previously reported the differentiation of mouse embryonic stem (ES) cells into retinal progenitors. However, these progenitors rarely differentiate into photoreceptors unless they are cultured with embryonic retinal tissues. Here we show the in vitro generation of putative rod and cone photoreceptors from mouse, monkey and human ES cells by stepwise treatments under defined culture conditions, in the absence of retinal tissues. With mouse ES cells, Crx+ photoreceptor precursors were induced from Rx+ retinal progenitors by treatment with a Notch signal inhibitor. Further application of fibroblast growth factors, Shh, taurine and retinoic acid yielded a greater number of rhodopsin+ rod photoreceptors, in addition to default cone production. With monkey and human ES cells, feeder- and serum-free suspension culture combined with Wnt and Nodal inhibitors induced differentiation of Rx+ or Mitf+ retinal progenitors, which produced retinal pigment epithelial cells. Subsequent treatment with retinoic acid and taurine induced photoreceptor differentiation. These findings may facilitate the development of human ES cell–based transplantation therapies for retinal diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity

Hiroshi Kawasaki; Hirofumi Suemori; Kenji Mizuseki; Kiichi Watanabe; Fumi Urano; Hiroshi Ichinose; Masatoshi Haruta; Masayo Takahashi; Kanako Yoshikawa; Shin-Ichi Nishikawa; Norio Nakatsuji; Yoshiki Sasai

We previously identified a stromal cell-derived inducing activity (SDIA), which induces differentiation of neural cells, including midbrain tyrosine hydroxylase-positive (TH+) dopaminergic neurons, from mouse embryonic stem cells. We report here that SDIA induces efficient neural differentiation also in primate embryonic stem cells. Induced neurons contain TH+ neurons at a frequency of 35% and produce a significant amount of dopamine. Interestingly, differentiation of TH+ neurons from undifferentiated embryonic cells occurs much faster in vitro (10 days) than it does in the embryo (≈5 weeks). In addition, 8% of the colonies contain large patches of Pax6+-pigmented epithelium of the retina. The SDIA method provides an unlimited source of primate cells for the study of pathogenesis, drug development, and transplantation in degenerative diseases such as Parkinsons disease and retinitis pigmentosa.


Journal of Cell Science | 2009

In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction

Fumitaka Osakada; Zi-Bing Jin; Yasuhiko Hirami; Hanako Ohashi Ikeda; Teruko Danjyo; Kiichi Watanabe; Yoshiki Sasai; Masayo Takahashi

The use of stem-cell therapy to treat retinal degeneration holds great promise. However, definitive methods of retinal differentiation that do not depend on recombinant proteins produced in animal or Escherichia coli cells have not been devised. Here, we report a defined culture method using low-molecular-mass compounds that induce differentiation of human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells into retinal progenitors, retinal pigment epithelium cells and photoreceptors. The casein kinase I inhibitor CKI-7, the ALK4 inhibitor SB-431542 and the Rho-associated kinase inhibitor Y-27632 in serum-free and feeder-free floating aggregate culture induce retinal progenitors positive for RX, MITF, PAX6 and CHX10. The treatment induces hexagonal pigmented cells that express RPE65 and CRALBP, form ZO1-positive tight junctions and exhibit phagocytic functions. Subsequent treatment with retinoic acid and taurine induces photoreceptors that express recoverin, rhodopsin and genes involved in phototransduction. Both three-factor (OCT3/4, SOX2 and KLF4) and four-factor (OCT3/4, SOX2, KLF4 and MYC) human iPS cells could be successfully differentiated into retinal cells by small-molecule induction. This method provides a solution to the problem of cross-species antigenic contamination in cell-replacement therapy, and is also useful for in vitro modeling of development, disease and drug screening.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Generation of neural crest-derived peripheral neurons and floor plate cells from mouse and primate embryonic stem cells

Kenji Mizuseki; Tatsunori Sakamoto; Kiichi Watanabe; Keiko Muguruma; Makoto Ikeya; Ayaka Nishiyama; Akiko Arakawa; Hirofumi Suemori; Norio Nakatsuji; Hiroshi Kawasaki; Fujio Murakami; Yoshiki Sasai

To understand the range of competence of embryonic stem (ES) cell-derived neural precursors, we have examined in vitro differentiation of mouse and primate ES cells into the dorsal- (neural crest) and ventralmost (floor plate) cells of the neural axis. Stromal cell-derived inducing activity (SDIA; accumulated on PA6 stromal cells) induces cocultured ES cells to differentiate into rostral CNS tissues containing both ventral and dorsal cells. Although early exposure of SDIA-treated ES cells to bone morphogenetic protein (BMP)4 suppresses neural differentiation and promotes epidermogenesis, late BMP4 exposure after the fourth day of coculture causes differentiation of neural crest cells and dorsalmost CNS cells, with autonomic system and sensory lineages induced preferentially by high and low BMP4 concentrations, respectively. In contrast, Sonic hedgehog (Shh) suppresses differentiation of neural crest lineages and promotes that of ventral CNS tissues such as motor neurons. Notably, high concentrations of Shh efficiently promote differentiation of HNF3β+ floor plate cells with axonal guidance activities. Thus, SDIA-treated ES cells generate naïve precursors that have the competence of differentiating into the “full” dorsal–ventral range of neuroectodermal derivatives in response to patterning signals.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation

Takafumi Wataya; Satoshi Ando; Keiko Muguruma; Hanako Ohashi Ikeda; Kiichi Watanabe; Mototsugu Eiraku; Masako Kawada; Jun Takahashi; Nobuo Hashimoto; Yoshiki Sasai

Embryonic stem (ES) cells differentiate into neuroectodermal progenitors when cultured as floating aggregates in serum-free conditions. Here, we show that strict removal of exogenous patterning factors during early differentiation steps induces efficient generation of rostral hypothalamic-like progenitors (Rax+/Six3+/Vax1+) in mouse ES cell-derived neuroectodermal cells. The use of growth factor-free chemically defined medium is critical and even the presence of exogenous insulin, which is commonly used in cell culture, strongly inhibits the differentiation via the Akt-dependent pathway. The ES cell-derived Rax+ progenitors generate Otp+/Brn2+ neuronal precursors (characteristic of rostral–dorsal hypothalamic neurons) and subsequently magnocellular vasopressinergic neurons that efficiently release the hormone upon stimulation. Differentiation markers of rostral–ventral hypothalamic precursors and neurons are induced from ES cell-derived Rax+ progenitors by treatment with Shh. Thus, in the absence of exogenous growth factors in medium, the ES cell-derived neuroectodermal cells spontaneously differentiate into rostral (particularly rostral–dorsal) hypothalamic-like progenitors, which generate characteristic hypothalamic neuroendocrine neurons in a stepwise fashion, as observed in vivo. These findings indicate that, instead of the addition of inductive signals, minimization of exogenous patterning signaling plays a key role in rostral hypothalamic specification of neural progenitors derived from pluripotent cells.


Nature | 2011

Intrinsic transition of embryonic stem-cell differentiation into neural progenitors

Daisuke Kamiya; Satoe Banno; Noriaki Sasai; Masatoshi Ohgushi; Hidehiko Inomata; Kiichi Watanabe; Masako Kawada; Rieko Yakura; Hiroshi Kiyonari; Kazuki Nakao; Lars Martin Jakt; Shin-Ichi Nishikawa; Yoshiki Sasai

The neural fate is generally considered to be the intrinsic direction of embryonic stem (ES) cell differentiation. However, little is known about the intracellular mechanism that leads undifferentiated cells to adopt the neural fate in the absence of extrinsic inductive signals. Here we show that the zinc-finger nuclear protein Zfp521 is essential and sufficient for driving the intrinsic neural differentiation of mouse ES cells. In the absence of the neural differentiation inhibitor BMP4, strong Zfp521 expression is intrinsically induced in differentiating ES cells. Forced expression of Zfp521 enables the neural conversion of ES cells even in the presence of BMP4. Conversely, in differentiation culture, Zfp521-depleted ES cells do not undergo neural conversion but tend to halt at the epiblast state. Zfp521 directly activates early neural genes by working with the co-activator p300. Thus, the transition of ES cell differentiation from the epiblast state into neuroectodermal progenitors specifically depends on the cell-intrinsic expression and activator function of Zfp521.


Stem Cells | 2006

Fluorescence‐Activated Cell Sorting–Based Purification of Embryonic Stem Cell–Derived Neural Precursors Averts Tumor Formation after Transplantation

Hitoshi Fukuda; Jun Takahashi; Kiichi Watanabe; Hideki Hayashi; Asuka Morizane; Masaomi Koyanagi; Yoshiki Sasai; Nobuo Hashimoto

The differentiation of dopaminergic (DA) neurons from mouse embryonic stem cells (ESCs) can be efficiently induced, making these neurons a potential source for transplantation as a treatment for Parkinsons disease, a condition characterized by the gradual loss of midbrain DA neurons. One of the major persistent obstacles to the successful implementation of therapeutic ESC transplantation is the propensity of ESC‐derived grafts to form tumors in vivo. To address this problem, we used fluorescence‐activated cell sorting to purify mouse ESC‐derived neural precursors expressing the neural precursor marker Sox1. ESC‐derived, Sox1+ cells began to express neuronal cell markers and differentiated into DA neurons upon transplantation into mouse brains but did not generate tumors in this site. In contrast, Sox1− cells that expressed ESC markers frequently formed tumors in vivo. These results indicate that Sox1‐based cell sorting of neural precursors prevents graft‐derived tumor formation after transplantation, providing a promising strategy for cell transplantation therapy of neurodegenerative disorders.

Collaboration


Dive into the Kiichi Watanabe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fumitaka Osakada

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge