Kim Larmier
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kim Larmier.
Angewandte Chemie | 2017
Kim Larmier; Wei-Chih Liao; Shohei Tada; Erwin Lam; René Verel; Atul Bansode; Atsushi Urakawa; Aleix Comas-Vives; Christophe Copéret
Methanol synthesis by CO2 hydrogenation is a key process in a methanol-based economy. This reaction is catalyzed by supported copper nanoparticles and displays strong support or promoter effects. Zirconia is known to enhance both the methanol production rate and the selectivity. Nevertheless, the origin of this observation and the reaction mechanisms associated with the conversion of CO2 to methanol still remain unknown. A mechanistic study of the hydrogenation of CO2 on Cu/ZrO2 is presented. Using kinetics, in situ IR and NMR spectroscopies, and isotopic labeling strategies, surface intermediates evolved during CO2 hydrogenation were observed at different pressures. Combined with DFT calculations, it is shown that a formate species is the reaction intermediate and that the zirconia/copper interface is crucial for the conversion of this intermediate to methanol.
Chemical Reviews | 2016
Christophe Copéret; Deven P. Estes; Kim Larmier; Keith Searles
Surface hydrides are ubiquitous in catalysis. However, their structures and properties are not as well-understood as those of their molecular counterparts, which have been extensively studied for the past 70 years. Hydrides isolated on surfaces have been characterized as stable entities on oxide surfaces or in zeolites. They have also been proposed as reaction intermediates in numerous catalytic processes (hydrogenation, hydrogenolysis, etc.). They have also been prepared via surface organometallic chemistry. In this review, we describe their key structural features and spectroscopic signatures. We discuss their reactivity and stability and also point out unexplored areas.
Journal of Physical Chemistry Letters | 2016
Kim Larmier; Shohei Tada; Aleix Comas-Vives; Christophe Copéret
Copper nanoparticles are widely used in catalysis and electrocatalysis, and the fundamental understanding of their activity requires reliable methods to assess the number of potentially reactive atoms exposed on the surface. Herein, we provide a molecular understanding of the difference observed in addressing surface site titration using prototypical methods: transmission electron micrscopy (TEM), H2 chemisorption, and N2O titration by a combination of experimental and theoretical study. We show in particular that microscopy does not allow assessing the amount of reactive surface sites, while H2 and N2O chemisorptions can, albeit with slightly different stoichiometries (1 O/2CuS and 1 H2/2.2CuS), which can be rationalized by density functional theory calculations. High-resolution TEM shows that the origin of the observed difference between microscopy and titration methods is due to the strong metal support interaction experienced by small copper nanoparticles with the silica surface.
Angewandte Chemie | 2015
Kim Larmier; Céline Chizallet; Pascal Raybaud
Controlling the nature and size of cobalt(II) polynuclear precursors on γ-alumina and silica-alumina supports represents a challenge for the synthesis of optimal cobalt-based heterogeneous catalysts. By density functional theory (DFT) calculations, we show how after drying the interaction of cobalt(II) precursor on γ-alumina is driven by a structural recognition phenomenon, leading to the formation of an epitaxial Co(OH)2 precipitate involving a Co-Al hydrotalcite-like interface. On a silica-alumina surface, this phenomenon is prevented due to the passivation effect of silica domains. This finding opens new routes to tune the metal-support interaction at the synthesis step of heterogeneous catalysts.
Journal of the American Chemical Society | 2017
Tigran Margossian; Kim Larmier; Sung Min Kim; Frank Krumeich; Alexey Fedorov; Peter Chen; Christoph R. Müller; Christophe Copéret
Syngas production via the dry reforming of methane (DRM) is a highly endothermic process conducted under harsh conditions; hence, the main difficulty resides in generating stable catalysts. This can, in principle, be achieved by reducing coke formation, sintering, and loss of metal through diffusion in the support. [{Ni(μ2-OCHO)(OCHO)(tmeda)}2(μ2-OH2)] (tmeda = tetramethylethylenediamine), readily synthesized and soluble in a broad range of solvents, was developed as a molecular precursor to form 2 nm Ni(0) nanoparticles on alumina, the commonly used support in DRM. While such small nanoparticles prevent coke deposition and increase the initial activity, operando X-ray Absorption Near-Edge Structure (XANES) spectroscopy confirms that deactivation largely occurs through the migration of Ni into the support. However, we show that Ni loss into the support can be mitigated through the Mg-doping of alumina, thereby increasing significantly the stability for DRM. The superior performance of our catalytic system is a direct consequence of the molecular design of the metal precursor and the support, resulting in a maximization of the amount of accessible metallic nickel in the form of small nanoparticles while preventing coke deposition.
Journal of the American Chemical Society | 2015
Cédric Bara; Lucie Plais; Kim Larmier; Elodie Devers; Mathieu Digne; Anne-Félicie Lamic-Humblot; Gerhard D. Pirngruber; Xavier Carrier
The role of the oxide support on the structure of the MoS2 active phase (size, morphology, orientation, sulfidation ratio, etc.) remains an open question in hydrotreating catalysis and biomass processing with important industrial implications for the design of improved catalytic formulations. The present work builds on an aqueous-phase surface-science approach using four well-defined α-alumina single crystal surfaces (C (0001), A (112̅0), M (101̅0), and R (11̅02) planes) as surrogates for γ-alumina (the industrial support) in order to discriminate the specific role of individual support facets. The reactivity of the various surface orientations toward molybdenum adsorption is controlled by the speciation of surface hydroxyls that determines the surface charge at the oxide/water interface. The C (0001) plane is inert, and the R (11̅02) plane has a limited Mo adsorption capacity while the A (112̅0) and M (101̅0) surfaces are highly reactive. Sulfidation of model catalysts reveals the highest sulfidation degree for the A (112̅0) and M (101̅0) planes suggesting weak metal/support interactions. Conversely, a low sulfidation rate and shorter MoS2 slabs are found for the R (11̅02) plane implying stronger Mo-O-Al bonds. These limiting cases are reminiscent of type I/type II MoS2 nanostructures. Structural analogies between α- and γ- alumina surfaces allow us to bridge the material gap with real Al2O3-supported catalysts. Hence, it can be proposed that Mo distribution and sulfidation rate are heterogeneous and surface-dependent on industrial γ-Al2O3-supported high-surface-area catalysts. These results demonstrate that a proper control of the γ-alumina morphology is a strategic lever for a molecular-scale design of hydrotreating catalysts.
Journal of the American Chemical Society | 2017
Lucas Foppa; Tigran Margossian; Sung Min Kim; Christoph R. Müller; Christophe Copéret; Kim Larmier; Aleix Comas-Vives
Transition metal nanoparticles (NPs) are typically supported on oxides to ensure their stability, which may result in modification of the original NP catalyst reactivity. In a number of cases, this is related to the formation of NP/support interface sites that play a role in catalysis. The metal/support interface effect verified experimentally is commonly ascribed to stronger reactants adsorption or their facile activation on such sites compared to bare NPs, as indicated by DFT-derived potential energy surfaces (PESs). However, the relevance of specific reaction elementary steps to the overall reaction rate depends on the preferred reaction pathways at reaction conditions, which usually cannot be inferred based solely on PES. Hereby, we use a multiscale (DFT/microkinetic) modeling approach and experiments to investigate the reactivity of the Ni/Al2O3 interface toward water-gas shift (WGS) and dry reforming of methane (DRM), two key industrial reactions with common elementary steps and intermediates, but held at significantly different temperatures: 300 vs 650 °C, respectively. Our model shows that despite the more energetically favorable reaction pathways provided by the Ni/Al2O3 interface, such sites may or may not impact the overall reaction rate depending on reaction conditions: the metal/support interface provides the active site for WGS reaction, acting as a reservoir for oxygenated species, while all Ni surface atoms are active for DRM. This is in contrast to what PESs alone indicate. The different active site requirement for WGS and DRM is confirmed by the experimental evaluation of the activity of a series of Al2O3-supported Ni NP catalysts with different NP sizes (2-16 nm) toward both reactions.
Angewandte Chemie | 2017
Kim Larmier; Céline Chizallet; Sylvie Maury; Nicolas Cadran; Johnny Abboud; Anne‐Félicie Lamic‐Humblot; Eric Marceau; Hélène Lauron-Pernot
The mechanism of isopropanol dehydration on amorphous silica-alumina (ASA) was unraveled by a combination of experimental kinetic measurements and periodic density functional theory (DFT) calculations. We show that pseudo-bridging silanols (PBS-Al) are the most likely active sites owing to the synergy between the Brønsted and Lewis acidic properties of these sites, which facilitates the activation of alcohol hydroxy groups as leaving groups. Isopropanol dehydration was used to specifically investigate these PBS-Al sites, whose density was estimated to be about 10-1 site nm-2 on the silica-doped alumina surface under investigation, by combining information from experiments and theoretical calculations.
Catalysis Science & Technology | 2018
Shohei Tada; Kim Larmier; Robert Büchel; Christophe Copéret
Flame made CuO–ZrO2 catalysts for CO2 hydrogenation to methanol were prepared such that only the Cu size was varied. Smaller CuO clusters in CuO–ZrO2 showed a higher activity for methanol synthesis via CO2 hydrogenation. Thus, the two-nozzle flame spray pyrolysis technique is a promising one-step preparation process for CO2 hydrogenation catalysts.
Chemical Communications | 2016
Tigran Margossian; Sean P. Culver; Kim Larmier; Feng Zhu; Richard L. Brutchey; Christophe Copéret
BaxSr1-xTiO3 perovskite nanocrystals, prepared by the vapor diffusion sol-gel method and characterized by state of the art surface techniques, display significantly different O-H stretching frequencies and adsorption properties towards CO2 as a function of the alkaline earth composition (Ba vs. Sr). The difference of properties can be associated with the more basic nature of BaO-rich than SrO-rich surfaces.