Kim Pingoud
VTT Technical Research Centre of Finland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kim Pingoud.
Biomass & Bioenergy | 1997
B. Schlamadinger; Mike Apps; Folke Bohlin; Leif Gustavsson; Gerfried Jungmeier; Gregg Marland; Kim Pingoud; Ilkka Savolainen
In this paper, which was prepared as part of IEA Bioenergy Task XV (“Greenhouse Gas Balances of Bioenergy Systems”), we outline a standard methodology for comparing the greenhouse gas balances of bioenergy systems with those of fossil energy systems. Emphasis is on a careful definition of system boundaries. The following issues are dealt with in detail: time interval analysed and changes of carbon stocks; reference energy systems; energy inputs required to produce, process and transport fuels; mass and energy losses along the entire fuel chain; energy embodied in facility infrastructure; distribution systems; cogeneration systems; by-products; waste wood and other biomass waste for energy; reference land use; and other environmental issues. For each of these areas recommendations are given on how analyses of greenhouse gas balances should be performed. In some cases we also point out alternative ways of doing the greenhouse gas accounting. Finally, the paper gives some recommendations on how bioenergy systems should be optimized from a greenhouse-gas-emissions point of view.
Gcb Bioenergy | 2013
Tuomas Helin; Laura Sokka; Sampo Soimakallio; Kim Pingoud; Tiina Pajula
Forests are a significant pool of terrestrial carbon. A key feature related to forest biomass harvesting and use is the typical time difference between carbon release into and sequestration from the atmosphere. Traditionally, the use of sustainably grown biomass has been considered as carbon neutral in life cycle assessment (LCA) studies. However, various approaches to account for greenhouse gas (GHG) emissions and sinks of forest biomass acquisition and use have also been developed and applied, resulting in different conclusions on climate impacts of forest products. The aim of this study is to summarize, clarify, and assess the suitability of these approaches for LCA. A literature review is carried out, and the results are analyzed through an assessment framework. The different approaches are reviewed through their approach to the definition of reference land‐use situation, consideration of time frame and timing of carbon emissions and sequestration, substitution credits, and indicators applied to measure climate impacts. On the basis of the review, it is concluded that, to account for GHG emissions and the related climate impacts objectively, biomass carbon stored in the products and the timing of sinks and emissions should be taken into account in LCA. The reference situation for forest land use has to be defined appropriately, describing the development in the absence of the studied system. We suggest the use of some climate impact indicator that takes the timing of the emissions and sinks into consideration and enables the use of different time frames. If substitution credits are considered, they need to be transparently presented in the results. Instead of carbon stock values taken from the literature, the use of dynamic forest models is recommended.
European Journal of Forest Research | 2012
Ljusk Ola Eriksson; Leif Gustavsson; Riitta Hänninen; Maarit Kallio; Henna Lyhykäinen; Kim Pingoud; Johanna Pohjola; Roger Sathre; Birger Solberg; Jarle Svanaes; Lauri Valsta
Using wood as a building material affects the carbon balance through several mechanisms. This paper describes a modelling approach that integrates a wood product substitution model, a global partial equilibrium model, a regional forest model and a stand-level model. Three different scenarios were compared with a business-as-usual scenario over a 23-year period (2008–2030). Two scenarios assumed an additional one million apartment flats per year will be built of wood instead of non-wood materials by 2030. These scenarios had little effect on markets and forest management and reduced annual carbon emissions by 0.2–0.5% of the total 1990 European GHG emissions. However, the scenarios are associated with high specific CO2 emission reductions per unit of wood used. The third scenario, an extreme assumption that all European countries will consume 1-m3 sawn wood per capita by 2030, had large effects on carbon emission, volumes and trade flows. The price changes of this scenario, however, also affected forest management in ways that greatly deviated from the partial equilibrium model projections. Our results suggest that increased wood construction will have a minor impact on forest management and forest carbon stocks. To analyse larger perturbations on the demand side, a market equilibrium model seems crucial. However, for that analytical system to work properly, the market and forest regional models must be better synchronized than here, in particular regarding assumptions on timber supply behaviour. Also, bioenergy as a commodity in market and forest models needs to be considered to study new market developments; those modules are currently missing.
Environmental Science & Policy | 2002
Riitta Korhonen; Kim Pingoud; Ilkka Savolainen; Robert Matthews
Abstract Carbon can be sequestered from the atmosphere to forests in order to lower the atmospheric carbon dioxide concentration. Tonne-years of sequestered carbon have been suggested to be used as a measure of global warming impact for these projects of finite lifetimes. It is illustrated here by simplified example cases that the objective of the stabilisation of the atmospheric greenhouse gas concentrations expressed in the UN Climate convention and the tonne-year approach can be in contradiction. Tonne-years generated by the project can indicate that carbon sequestration helps in the mitigation of climate change even when the impact of the project on the CO2 concentration is that concentration increases. Hence, the use of the tonne-years might waste resources of fulfilling the objective of the convention. The studied example cases are closely related to the IPCC estimates on global forestation potentials by 2050. It is also illustrated that the use of bioenergy from the reforested areas to replace fossil fuels can in the long term contribute more effectively to the control of carbon dioxide concentrations than permanent sequestration of carbon to forests. However, the estimated benefits depend on the time frame considered, whether we are interested in the decadal scale of controlling of the rate of climate change or in the centennial scale of controlling or halting the climate change.
Gcb Bioenergy | 2012
Ryan M. Bright; Francesco Cherubini; Rasmus Astrup; Neil Bird; Annette Cowie; Mark J. Ducey; Gregg Marland; Kim Pingoud; Ilkka Savolainen; Anders Hammer Strømman
RYAN M. BR IGHT * , FRANCESCO CHERUB IN I * , RASMUS ASTRUP † , NE I L B IRD ‡ , ANNETTE L . COWIE § , MARK J . DUCEY ¶ , GREGG MARLAND k, K IM P INGOUD* * , I LKKA SAVOLA INEN* * and ANDERS H. STRØMMAN* *Industrial Ecology Program, Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway, †Department of Forest Resources, Norwegian Forest and Landscape Institute, Ås, Norway, ‡Joanneum Research, Resources, Institute for Water, Energy and Sustainability, Graz, Austria, §Department of Primary Industries, Rural Climate Solutions, University of New England/NSW, Armidale, Australia, ¶Department of Natural Resources & the Environment, University of New Hampshire, Durham, N. H, USA, kResearch Institute for Environment, Energy, and Economics, Appalachian State University, Boone, North Carolina, USA, **VTT Technical Research Center of Finland, Espoo, Finland
Environmental Science & Policy | 1999
Kim Pingoud; Antti Lehtilä; Ilkka Savolainen
Abstract In Finland the percentage of biomass fuels of total primary energy supply is relatively high, close to 17%. The share of biomass in the total electricity generation is as much as 10%. This high share in Finland is mainly due to the cogeneration of electricity and heat within forest industry using biomass-based by-products and wastes as fuels. Forest industry is also a large user of fossil-based energy. About 28% of total primary energy consumption in Finland takes place in forest industry, causing about 16% of the total fossil carbon dioxide emissions. The Kyoto protocol limits the fossil CO2 and other greenhouse gas emissions and provides some incentives to the Finnish forest sector. There are trade-offs among the raw-material, energy and carbon sink uses of the forests. Fossil emissions can be reduced e.g. by using more wood and producing chemical pulp instead of mechanical one. According to the calculation rules of the Kyoto protocol Finnish forests in 2008–2012 are estimated to form a carbon source of 0.36 Tg C a−1 due to land use changes. Factually the forest biomass will still be a net carbon sink between 3.5 and 8.8 Tg C a−1. Because the carbon sinks of existing forests are not counted in the protocol, there is an incentive to increase wood use in those and to decrease the real net carbon sink. Also the criteria for sustainable forestry could still simultaneously be met.
Environmental Science & Technology | 2016
Sampo Soimakallio; Laura Saikku; Lauri Valsta; Kim Pingoud
The urgent need to mitigate climate change invokes both opportunities and challenges for forest biomass utilization. Fossil fuels can be substituted by using wood products in place of alternative materials and energy, but wood harvesting reduces forest carbon sink and processing of wood products requires material and energy inputs. We assessed the extended life cycle carbon emissions considering substitution impacts for various wood utilization scenarios over 100 years from 2010 onward for Finland. The scenarios were based on various but constant wood utilization structures reflecting current and anticipated mix of wood utilization activities. We applied stochastic simulation to deal with the uncertainty in a number of input variables required. According to our analysis, the wood utilization decrease net carbon emissions with a probability lower than 40% for each of the studied scenarios. Furthermore, large emission reductions were exceptionally unlikely. The uncertainty of the results were influenced clearly the most by the reduction in the forest carbon sink. There is a significant trade-off between avoiding emissions through fossil fuel substitution and reduction in forest carbon sink due to wood harvesting. This creates a major challenge for forest management practices and wood utilization activities in responding to ambitious climate change mitigation targets.
Gcb Bioenergy | 2016
Kim Pingoud; Tommi Ekholm; Sampo Soimakallio; Tuomas Helin
A carbon (C) balance indicator is presented for the evaluation of forest bioenergy scenarios as a means to reduce greenhouse gas (GHG) emissions. A bioenergy‐intensive scenario with a greater harvest is compared to a baseline scenario. The relative carbon indicator (RC) is defined as the ratio between the difference in terrestrial C stocks – that is the C debt – and the difference in cumulative bioenergy harvest between the scenarios, over a selected time frame T. A value of zero indicates no C debt from additional biomass harvests, while a value of one indicates a C debt equal to the amount of additionally harvested biomass C. Multiplying the RC indicator by the smokestack emission factor of biomass (approximately 110 t CO2/TJ) provides the net cumulative CO2 emission factor of the biomass combustion as a function of T, allowing a direct comparison with the emission factors of comparable fossil fuels. The indicator is applied to bioenergy cases in Finland, where typically the rotation length of managed forests is long and the decay rate of harvest residues is slow. The country‐level examples illustrate that although Finnish forests remain as a C sink in each of the considered scenarios, the efforts of increasing forest bioenergy may still increase the atmospheric CO2 concentrations in comparison with the baseline scenario and use of fossil fuels. The results also show that the net emission factor depends – besides on forest‐growth or residue‐decay dynamics – on the timing and evolution of harvests as well. Unlike for the constant fossil C emission factor, the temporal profile of bioenergy use is of great importance for the net emission factor of biomass.
Climate Policy | 2006
Annette Cowie; Kim Pingoud; Bernhard Schlamadinger
Abstract This article collates definitions of some key terms commonly used in greenhouse gas reporting and accounting for the Land Use, Land-Use Change and Forestry (LULUCF) sector, and highlights areas of ambiguity and divergent interpretations of key concepts. It uses the example of harvested wood products to demonstrate the impact of different interpretations. The objective is to facilitate clear communication amongst negotiators and practitioners in relation to the terms emissions, removals, sources and sinks. Confusion and misunderstandings that have arisen in the past are rooted in diverging interpretations of the terms ‘emissions’ and ‘removals’ in the context of land use and wood products. One interpretation sees emissions and removals to be approximated by a change in carbon stocks in a number of selected carbon pools that may include or exclude harvested wood products. Another interpretation views emissions and removals as gross fluxes between the atmosphere and the land/wood products system. The various alternative approaches that have been proposed for reporting for harvested wood products are applicable to one or the other of these interpretations: the stock-change and production approaches, focused on stock changes, are applicable to the first interpretation; whereas the atmospheric flow and simple decay approaches focus on fluxes, as in the second interpretation. Whether emissions/removals are approximated by stock change or from gross fluxes, it is critical that a consistent approach is applied across the whole LULUCF/AFOLU sector. Approaches based on stock change are recommended over those based on fluxes.
Gcb Bioenergy | 2016
Tuomas Helin; Hannu Salminen; Jari Hynynen; Sampo Soimakallio; Saija Huuskonen; Kim Pingoud
Wood harvesting in boreal forests typically consists of sequential harvesting operations within a rotation: a few thinnings and a final felling. The aim of this paper is to model differentiated relative global warming potential (GWP) coefficients for stemwood use from different thinnings and final fellings, and correction factors for long‐lived wood products, potentially applicable in life cycle assessment studies. All thinnings and final fellings influence the development of forest carbon stocks. The climate impact of a single harvesting operation is generated in comparison with no harvesting, thus encountering a methodological problem on how to handle the subsequent operations. The dynamic forest stand simulator MOTTI was applied in the modelling of evolution of forest carbon stocks at landscape level in Southern Finland. The landscape‐level approach for climate impact assessment gave results similar to some stand‐level approaches presented in previous literature that included the same forest C pools and also studied the impacts relative to the no‐harvest situation. The climate impacts of stemwood use decreased over time. For energy use, the impacts were higher or similar in the short term and 0–50% lower in the midterm in comparison with an identical amount of fossil CO2. The impacts were to some extent (approximately 20–40%) lower for wood from intermediate thinnings than for wood from final fellings or first thinnings. However, the study reveals that product lifetime has higher relative influence on the climate impacts of wood‐based value chains than whether the stemwood originates from thinnings or final fellings. Although the evolution of future C stocks in unmanaged boreal forests is uncertain, a sensitivity analysis suggests that landscape‐level model results for climate impacts would not be sensitive to the assumptions made on the future evolution of C stocks in unmanaged forest. Energy use of boreal stemwood seems to be far from climate neutral.