Kim Tieu
University of Rochester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kim Tieu.
The Journal of Neuroscience | 2002
Du Chu Wu; Vernice Jackson-Lewis; Miquel Vila; Kim Tieu; Peter Teismann; Caryn Vadseth; Dong-Kug Choi; Harry Ischiropoulos; Serge Przedborski
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) damages the nigrostriatal dopaminergic pathway as seen in Parkinsons disease (PD), a common neurodegenerative disorder with no effective protective treatment. Consistent with a role of glial cells in PD neurodegeneration, here we show that minocycline, an approved tetracycline derivative that inhibits microglial activation independently of its antimicrobial properties, mitigates both the demise of nigrostriatal dopaminergic neurons and the formation of nitrotyrosine produced by MPTP. In addition, we show that minocycline not only prevents MPTP-induced activation of microglia but also the formation of mature interleukin-1β and the activation of NADPH–oxidase and inducible nitric oxide synthase (iNOS), three key microglial-derived cytotoxic mediators. Previously, we demonstrated that ablation of iNOS attenuates MPTP-induced neurotoxicity. Now, we demonstrate that iNOS is not the only microglial-related culprit implicated in MPTP-induced toxicity because mutant iNOS-deficient mice treated with minocycline are more resistant to this neurotoxin than iNOS-deficient mice not treated with minocycline. This study demonstrates that microglial-related inflammatory events play a significant role in the MPTP neurotoxic process and suggests that minocycline may be a valuable neuroprotective agent for the treatment of PD.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Cristofol Vives-Bauza; Chun Zhou; Yong Huang; Mei Cui; Rosa L.A. de Vries; Jiho Kim; Jessica May; Maja Aleksandra Tocilescu; Wencheng Liu; Han Seok Ko; Jordi Magrané; Darren J. Moore; Valina L. Dawson; Regis Grailhe; Ted M. Dawson; Chenjian Li; Kim Tieu; Serge Przedborski
Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and PARK2/Parkin mutations cause autosomal recessive forms of Parkinsons disease. Upon a loss of mitochondrial membrane potential (ΔΨm) in human cells, cytosolic Parkin has been reported to be recruited to mitochondria, which is followed by a stimulation of mitochondrial autophagy. Here, we show that the relocation of Parkin to mitochondria induced by a collapse of ΔΨm relies on PINK1 expression and that overexpression of WT but not of mutated PINK1 causes Parkin translocation to mitochondria, even in cells with normal ΔΨm. We also show that once at the mitochondria, Parkin is in close proximity to PINK1, but we find no evidence that Parkin catalyzes PINK1 ubiquitination or that PINK1 phosphorylates Parkin. However, co-overexpression of Parkin and PINK1 collapses the normal tubular mitochondrial network into mitochondrial aggregates and/or large perinuclear clusters, many of which are surrounded by autophagic vacuoles. Our results suggest that Parkin, together with PINK1, modulates mitochondrial trafficking, especially to the perinuclear region, a subcellular area associated with autophagy. Thus by impairing this process, mutations in either Parkin or PINK1 may alter mitochondrial turnover which, in turn, may cause the accumulation of defective mitochondria and, ultimately, neurodegeneration in Parkinsons disease.
Biological Chemistry | 2009
Nazzareno Ballatori; Suzanne M. Krance; Sylvia Notenboom; Shujie Shi; Kim Tieu; Christine L. Hammond
Abstract Glutathione (GSH) plays an important role in a multitude of cellular processes, including cell differentiation, proliferation, and apoptosis, and as a result, disturbances in GSH homeostasis are implicated in the etiology and/or progression of a number of human diseases, including cancer, diseases of aging, cystic fibrosis, and cardiovascular, inflammatory, immune, metabolic, and neurodegenerative diseases. Owing to the pleiotropic effects of GSH on cell functions, it has been quite difficult to define the role of GSH in the onset and/or the expression of human diseases, although significant progress is being made. GSH levels, turnover rates, and/or oxidation state can be compromised by inherited or acquired defects in the enzymes, transporters, signaling molecules, or transcription factors that are involved in its homeostasis, or from exposure to reactive chemicals or metabolic intermediates. GSH deficiency or a decrease in the GSH/glutathione disulfide ratio manifests itself largely through an increased susceptibility to oxidative stress, and the resulting damage is thought to be involved in diseases, such as cancer, Parkinsons disease, and Alzheimers disease. In addition, imbalances in GSH levels affect immune system function, and are thought to play a role in the aging process. Just as low intracellular GSH levels decrease cellular antioxidant capacity, elevated GSH levels generally increase antioxidant capacity and resistance to oxidative stress, and this is observed in many cancer cells. The higher GSH levels in some tumor cells are also typically associated with higher levels of GSH-related enzymes and transporters. Although neither the mechanism nor the implications of these changes are well defined, the high GSH content makes cancer cells chemoresistant, which is a major factor that limits drug treatment. The present report highlights and integrates the growing connections between imbalances in GSH homeostasis and a multitude of human diseases.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Peter Teismann; Kim Tieu; Dong-Kug Choi; Du-Chu Wu; Ali Naini; Stéphane Hunot; Miquel Vila; Vernice Jackson-Lewis; Serge Przedborski
Parkinsons disease (PD) is a neurodegenerative disorder of uncertain pathogenesis characterized by the loss of the nigrostriatal dopaminergic neurons, which can be modeled by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Increased expression of cyclooxygenase type 2 (COX-2) and production of prostaglandin E2 have been implicated in neurodegeneration in several pathological settings. Here we show that COX-2, the rate-limiting enzyme in prostaglandin E2 synthesis, is up-regulated in brain dopaminergic neurons of both PD and MPTP mice. COX-2 induction occurs through a JNK/c-Jun-dependent mechanism after MPTP administration. We demonstrate that targeting COX-2 does not protect against MPTP-induced dopaminergic neurodegeneration by mitigating inflammation. Instead, we provide evidence that COX-2 inhibition prevents the formation of the oxidant species dopamine-quinone, which has been implicated in the pathogenesis of PD. This study supports a critical role for COX-2 in both the pathogenesis and selectivity of the PD neurodegenerative process. Because of the safety record of the COX-2 inhibitors, and their ability to penetrate the blood–brain barrier, these drugs may be therapies for PD.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Du-Chu Wu; Peter Teismann; Kim Tieu; Miquel Vila; Vernice Jackson-Lewis; Harry Ischiropoulos; Serge Przedborski
Parkinsons disease (PD) is a neurodegenerative disorder of uncertain pathogenesis characterized by a loss of substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons, and can be modeled by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Both inflammatory processes and oxidative stress may contribute to MPTP- and PD-related neurodegeneration. However, whether inflammation may cause oxidative damage in MPTP and PD is unknown. Here we show that NADPH-oxidase, the main reactive oxygen species (ROS)-producing enzyme during inflammation, is up-regulated in SNpc of human PD and MPTP mice. These changes coincide with the local production of ROS, microglial activation, and DA neuronal loss seen after MPTP injections. Mutant mice defective in NADPH-oxidase exhibit less SNpc DA neuronal loss and protein oxidation than their WT littermates after MPTP injections. We show that extracellular ROS are a main determinant in inflammation-mediated DA neurotoxicity in the MPTP model of PD. This study supports a critical role for NADPH-oxidase in the pathogenesis of PD and suggests that targeting this enzyme or enhancing extracellular antioxidants may provide novel therapies for PD.
Nature Neuroscience | 2010
Nanna Goldman; Michael Chen; Takumi Fujita; Qiwu Xu; Weiguo Peng; Wei Liu; Tina K Jensen; Yong Pei; Fushun Wang; Xiaoning Han; Chen J; Jurgen Schnermann; Takahiro Takano; Lane K. Bekar; Kim Tieu
Acupuncture is an invasive procedure commonly used to relieve pain. Acupuncture is practiced worldwide, despite difficulties in reconciling its principles with evidence-based medicine. We found that adenosine, a neuromodulator with anti-nociceptive properties, was released during acupuncture in mice and that its anti-nociceptive actions required adenosine A1 receptor expression. Direct injection of an adenosine A1 receptor agonist replicated the analgesic effect of acupuncture. Inhibition of enzymes involved in adenosine degradation potentiated the acupuncture-elicited increase in adenosine, as well as its anti-nociceptive effect. These observations indicate that adenosine mediates the effects of acupuncture and that interfering with adenosine metabolism may prolong the clinical benefit of acupuncture.
Current Opinion in Neurology | 2001
Miquel Vila; Vernice Jackson-Lewis; Christelle Guégan; Du Chu Wu; Peter Teismann; Dong-Kug Choi; Kim Tieu; Serge Przedborski
Parkinsons disease is a common neurodegenerative disorder characterized by the progressive loss of the dopaminergic neurons in the substantia nigra pars compacta. The loss of these neurons is associated with a glial response composed mainly of activated microglial cells and, to a lesser extent, of reactive astrocytes. This glial response may be the source of trophic factors and can protect against reactive oxygen species and glutamate. Aside from these beneficial effects, the glial response can mediate a variety of deleterious events related to the production of reactive species, and pro-inflammatory prostaglandin and cytokines. This article reviews the potential protective and deleterious effects of glial cells in the substantia nigra pars compacta of Parkinsons disease.
Movement Disorders | 2003
Peter Teismann; Kim Tieu; Oren Cohen; Dong Kug Choi; Du Chu Wu; Daniel Marks; Miquel Vila; Vernice Jackson-Lewis; Serge Przedborski
An erratum for this article appears in the January, 2004 issue of Movement Disorders (Mov Disord 2004;19:119).
Journal of Clinical Investigation | 2003
Kim Tieu; Celine Perier; Casper Caspersen; Peter Teismann; Du-Chu Wu; Shidu Yan; Ali Naini; Miquel Vila; Vernice Jackson-Lewis; Ravichandran Ramasamy; Serge Przedborski
Parkinson disease (PD) is a neurodegenerative disorder characterized by a loss of the nigrostriatal dopaminergic neurons accompanied by a deficit in mitochondrial respiration. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that causes dopaminergic neurodegeneration and a mitochondrial deficit reminiscent of PD. Here we show that the infusion of the ketone body d-beta-hydroxybutyrate (DbetaHB) in mice confers partial protection against dopaminergic neurodegeneration and motor deficits induced by MPTP. These effects appear to be mediated by a complex II-dependent mechanism that leads to improved mitochondrial respiration and ATP production. Because of the safety record of ketone bodies in the treatment of epilepsy and their ability to penetrate the blood-brain barrier, DbetaHB may be a novel neuroprotective therapy for PD.
The Journal of Neuroscience | 2005
Dong Kug Choi; Subramaniam Pennathur; Celine Perier; Kim Tieu; Peter Teismann; Du Chu Wu; Vernice Jackson-Lewis; Miquel Vila; Jean Paul Vonsattel; Jay W. Heinecke; Serge Przedborski
Parkinsons disease (PD) is characterized by a loss of ventral midbrain dopaminergic neurons, which can be modeled by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Inflammatory oxidants have emerged as key contributors to PD- and MPTP-related neurodegeneration. Here, we show that myeloperoxidase (MPO), a key oxidant-producing enzyme during inflammation, is upregulated in the ventral midbrain of human PD and MPTP mice. We also show that ventral midbrain dopaminergic neurons of mutant mice deficient in MPO are more resistant to MPTP-induced cytotoxicity than their wild-type littermates. Supporting the oxidative damaging role of MPO in this PD model are the demonstrations that MPO-specific biomarkers 3-chlorotyrosine and hypochlorous acid-modified proteins increase in the brains of MPTP-injected mice. This study demonstrates that MPO participates in the MPTP neurotoxic process and suggests that inhibitors of MPO may provide a protective benefit in PD.