Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kim Van Deun is active.

Publication


Featured researches published by Kim Van Deun.


Veterinary Research | 2011

Colonization factors of Campylobacter jejuni in the chicken gut

David Hermans; Kim Van Deun; An Martel; Filip Van Immerseel; Winy Messens; Marc Heyndrickx; Freddy Haesebrouck; Frank Pasmans

Campylobacter contaminated broiler chicken meat is an important source of foodborne gastroenteritis and poses a serious health burden in industrialized countries. Broiler chickens are commonly regarded as a natural host for this zoonotic pathogen and infected birds carry a very high C. jejuni load in their gastrointestinal tract, especially the ceca. This eventually results in contaminated carcasses during processing. Current intervention methods fail to reduce the colonization of broiler chicks by C. jejuni due to an incomplete understanding on the interaction between C. jejuni and its avian host. Clearly, C. jejuni developed several survival and colonization mechanisms which are responsible for its highly adapted nature to the chicken host. But how these mechanisms interact with one another, leading to persistent, high-level cecal colonization remains largely obscure. A plethora of mutagenesis studies in the past few years resulted in the identification of several of the genes and proteins of C. jejuni involved in different aspects of the cellular response of this bacterium in the chicken gut. In this review, a thorough, up-to-date overview will be given of the survival mechanisms and colonization factors of C. jejuni identified to date. These factors may contribute to our understanding on how C. jejuni survival and colonization in chicks is mediated, as well as provide potential targets for effective subunit vaccine development.


Veterinary Microbiology | 2011

Campylobacter control in poultry by current intervention measures ineffective: Urgent need for intensified fundamental research

David Hermans; Kim Van Deun; Winy Messens; An Martel; Filip Van Immerseel; Freddy Haesebrouck; Geertrui Rasschaert; Marc Heyndrickx; Frank Pasmans

Campylobacter-contaminated poultry meat is an important source of foodborne gastroenteritis and poses a serious health burden in industrialized countries. Broiler chickens are commonly regarded as a natural host for this pathogen and infected birds carry a very high Campylobacter load in their gastrointestinal tract, especially the ceca. This results in contaminated carcasses during processing. While hygienic measures at the farm and control measures during carcass processing can have some effect on the reduction of Campylobacter numbers on the retail product, intervention at the farm level by reducing colonization of the ceca should be taken into account in the overall control policy. This review gives an up-to-date overview of suggested on-farm control measures to reduce the prevalence and colonization of Campylobacter in poultry.


Vector-borne and Zoonotic Diseases | 2012

Poultry as a Host for the Zoonotic Pathogen Campylobacter jejuni

David Hermans; Frank Pasmans; Winy Messens; An Martel; Filip Van Immerseel; Geertrui Rasschaert; Marc Heyndrickx; Kim Van Deun; Freddy Haesebrouck

Campylobacteriosis is the most reported foodborne gastroenteritic disease and poses a serious health burden in industrialized countries. Disease in humans is mainly caused by the zoonotic pathogen Campylobacter jejuni. Due to its wide-spread occurrence in the environment, the epidemiology of Campylobacter remains poorly understood. It is generally accepted, however, that chickens are a natural host for Campylobacter jejuni, and for Campylobacter spp. in general, and that colonized broiler chicks are the primary vector for transmitting this pathogen to humans. Several potential sources and vectors for transmitting C. jejuni to broiler flocks have been identified. Initially, one or a few broilers can become colonized at an age of >2 weeks until the end of rearing, after which the infection will rapidly spread throughout the entire flock. Such a flock is generally colonized until slaughter and infected birds carry a very high C. jejuni load in their gastrointestinal tract, especially the ceca. This eventually results in contaminated carcasses during processing, which can transmit this pathogen to humans. Recent genetic typing studies showed that chicken isolates can frequently be linked to human clinical cases of Campylobacter enteritis. However, despite the increasing evidence that the chicken reservoir is the number one risk factor for disease in humans, no effective strategy exists to reduce Campylobachter prevalence in poultry flocks, which can in part be explained by the incomplete understanding of the epidemiology of C. jejuni in broiler flocks. As a result, the number of human campylobacteriosis cases associated with the chicken vector remains strikingly high.


Veterinary Microbiology | 2008

Colonization strategy of Campylobacter jejuni results in persistent infection of the chicken gut.

Kim Van Deun; Frank Pasmans; Richard Ducatelle; Bram Flahou; Kris Vissenberg; An Martel; Wim Van Den Broeck; Filip Van Immerseel; Freddy Haesebrouck

Although poultry meat is now recognized as the main source of Campylobacter jejuni gastroenteritis, little is known about the strategy used by the bacterium to colonize the chicken intestinal tract. In this study, the mechanism of C. jejuni colonization in chickens was studied using four human and four poultry isolates of C. jejuni. The C. jejuni strains were able to invade chicken primary cecal epithelial crypt cells in a predominantly microtubule-dependent way (five out of eight strains). Invasion of cecal epithelial cells was not accompanied by necrosis or apoptosis in the cell cultures, nor by intestinal inflammation in a cecal loop model. C. jejuni from human origin displayed a similar invasive profile compared to the poultry isolates. Invasiveness of the strains in vitro correlated with the magnitude of spleen colonization in C. jejuni inoculated chicks. The C. jejuni bacteria that invaded the epithelial cells were not able to proliferate intracellularly, but quickly evaded from the cells. In contrast, the C. jejuni strains were capable of replication in chicken intestinal mucus. These findings suggest a novel colonization mechanism by escaping rapid mucosal clearance through short-term epithelial invasion and evasion, combined with fast replication in the mucus.


PLOS ONE | 2011

The Mycotoxin Deoxynivalenol Potentiates Intestinal Inflammation by Salmonella Typhimurium in Porcine Ileal Loops

Virginie Vandenbroucke; Siska Croubels; An Martel; Elin Verbrugghe; Joline Goossens; Kim Van Deun; Filip Boyen; Arthur R. Thompson; Neil Shearer; Patrick De Backer; Freddy Haesebrouck; Frank Pasmans

Background and Aims Both deoxynivalenol (DON) and nontyphoidal salmonellosis are emerging threats with possible hazardous effects on both human and animal health. The objective of this study was to examine whether DON at low but relevant concentrations interacts with the intestinal inflammation induced by Salmonella Typhimurium. Methodology By using a porcine intestinal ileal loop model, we investigated whether intake of low concentrations of DON interacts with the early intestinal inflammatory response induced by Salmonella Typhimurium. Results A significant higher expression of IL-12 and TNFα and a clear potentiation of the expression of IL-1β, IL-8, MCP-1 and IL-6 was seen in loops co-exposed to 1 µg/mL of DON and Salmonella Typhimurium compared to loops exposed to Salmonella Typhimurium alone. This potentiation coincided with a significantly enhanced Salmonella invasion in and translocation over the intestinal epithelial IPEC-J2 cells, exposed to non-cytotoxic concentrations of DON for 24 h. Exposure of Salmonella Typhimurium to 0.250 µg/mL of DON affected the bacterial gene expression level of a limited number of genes, however none of these expression changes seemed to give an explanation for the increased invasion and translocation of Salmonella Typhimurium and the potentiated inflammatory response in combination with DON. Conclusion These data imply that the intake of low and relevant concentrations of DON renders the intestinal epithelium more susceptible to Salmonella Typhimurium with a subsequent potentiation of the inflammatory response in the gut.


Veterinary Research | 2011

Stress induced Salmonella Typhimurium recrudescence in pigs coincides with cortisol induced increased intracellular proliferation in macrophages

Elin Verbrugghe; Filip Boyen; Alexander Van Parys; Kim Van Deun; Siska Croubels; Arthur R. Thompson; Neil Shearer; Bregje Leyman; Freddy Haesebrouck; Frank Pasmans

Salmonella Typhimurium infections in pigs often result in the development of carriers that intermittently excrete Salmonella in very low numbers. During periods of stress, for example transport to the slaughterhouse, recrudescence of Salmonella may occur, but the mechanism of this stress related recrudescence is poorly understood. Therefore, the aim of the present study was to determine the role of the stress hormone cortisol in Salmonella recrudescence by pigs. We showed that a 24 h feed withdrawal increases the intestinal Salmonella Typhimurium load in pigs, which is correlated with increased serum cortisol levels. A second in vivo trial demonstrated that stress related recrudescence of Salmonella Typhimurium in pigs can be induced by intramuscular injection of dexamethasone. Furthermore, we found that cortisol, but not epinephrine, norepinephrine and dopamine, promotes intracellular proliferation of Salmonella Typhimurium in primary porcine alveolar macrophages, but not in intestinal epithelial cells and a transformed cell line of porcine alveolar macrophages. A microarray based transcriptomic analysis revealed that cortisol did not directly affect the growth or the gene expression or Salmonella Typhimurium in a rich medium, which implies that the enhanced intracellular proliferation of the bacterium is probably caused by an indirect effect through the cell. These results highlight the role of cortisol in the recrudescence of Salmonella Typhimurium by pigs and they provide new evidence for the role of microbial endocrinology in host-pathogen interactions.


British Journal of Nutrition | 2008

Butyrate protects Caco-2 cells from Campylobacter jejuni invasion and translocation.

Kim Van Deun; Frank Pasmans; Filip Van Immerseel; Richard Ducatelle; Freddy Haesebrouck

Invasion in and translocation across enterocytes are major events during Campylobacter jejuni-induced enteritis in humans. C. jejuni in vitro infection of cell monolayers typically results in loss of tight junction integrity, which could contribute to translocation. In the present study, we wanted to investigate whether butyrate is able to confer protection to Caco-2 cells against C. jejuni invasion, thus reducing paracellular permeability and limiting C. jejuni translocation. Protection of Caco-2 cells against C. jejuni invasion was assessed using a gentamicin protection assay. Transwell systems were used to investigate the impact of butyrate on translocation of C. jejuni across a Caco-2 monolayer and its effect on transepithelial resistance during infection. Butyrate protected Caco-2 cells against C. jejuni invasion in a concentration-dependent manner. Differentiated Caco-2 cells were less susceptible to C. jejuni invasion than 3-d-old undifferentiated cells and higher concentrations of butyrate and longer incubation times were needed to become refractive for invasion. C. jejuni translocation over Caco-2 monolayers was reduced when monolayers were treated with butyrate and this was accompanied by an enhanced drop in transepithelial resistance. The present study showed that butyrate is able to protect Caco-2 cells from two major virulence mechanisms of C. jejuni, namely invasion and translocation, but not from a decline in transepithelial resistance.


PLOS ONE | 2010

Helicobacter suis causes severe gastric pathology in mouse and mongolian gerbil models of human gastric disease.

Bram Flahou; Freddy Haesebrouck; Frank Pasmans; Katharina D'Herde; A. Driessen; Kim Van Deun; Annemieke Smet; Luc Duchateau; Koen Chiers; Richard Ducatelle

Background “Helicobacter (H.) heilmannii” type 1 is the most prevalent gastric non-H. pylori Helicobacter species in humans suffering from gastric disease. It has been shown to be identical to H. suis, a bacterium which is mainly associated with pigs. To obtain better insights into the long-term pathogenesis of infections with this micro-organism, experimental infections were carried out in different rodent models. Methodology/Principal Findings Mongolian gerbils and mice of two strains (BALB/c and C57BL/6) were infected with H. suis and sacrificed at 3 weeks, 9 weeks and 8 months after infection. Gastric tissue samples were collected for PCR analysis, histological and ultrastructural examination. In gerbils, bacteria mainly colonized the antrum and a narrow zone in the fundus near the forestomach/stomach transition zone. In both mice strains, bacteria colonized the entire glandular stomach. Colonization with H. suis was associated with necrosis of parietal cells in all three animal strains. From 9 weeks after infection onwards, an increased proliferation rate of mucosal epithelial cells was detected in the stomach regions colonized with H. suis. Most gerbils showed a marked lymphocytic infiltration in the antrum and in the forestomach/stomach transition zone, becoming more pronounced in the course of time. At 8 months post infection, severe destruction of the normal antral architecture at the inflamed sites and development of mucosa-associated lymphoid tissue (MALT) lymphoma-like lesions were observed in some gerbils. In mice, the inflammatory response was less pronounced than in gerbils, consisting mainly of mononuclear cell infiltration and being most severe in the fundus. Conclusions/Significance H. suis causes death of parietal cells, epithelial cell hyperproliferation and severe inflammation in mice and Mongolian gerbil models of human gastric disease. Moreover, MALT lymphoma-like lesions were induced in H. suis-infected Mongolian gerbils. Therefore, the possible involvement of this micro-organism in human gastric disease should not be neglected.


Critical Reviews in Microbiology | 2012

A tolerogenic mucosal immune response leads to persistent Campylobacter jejuni colonization in the chicken gut.

David Hermans; Frank Pasmans; Marc Heyndrickx; Filip Van Immerseel; An Martel; Kim Van Deun; Freddy Haesebrouck

Campylobacter enteritis is the most reported zoonotic disease in many developed countries where it imposes a serious health burden. Campylobacter transmission to humans occurs primarily through the chicken vector. Chicks are regarded as a natural host for Campylobacter species and are colonized with C. jejuni in particular. But despite carrying a very high bacterial load in their gastrointestinal tract, these birds, in contrast to humans, do not develop pathological signs. It seems that in chickens C. jejuni principally harbors in the cecal mucosal crypts, where an inefficient inflammatory response fails to clear the bacterium from the gut. Recent intensive research resulted in an increased insight into the cross talk between C. jejuni and its avian host. This review discusses the chicken intestinal mucosal immune response upon C. jejuni entrance, leading to tolerance and persistent cecal colonization. It might in addition provide a solid base for further research regarding this topic aiming to fully understand the host–bacterium dynamics of C. jejuni in chicks and to develop effective control measures to clear this zoonotic pathogen from poultry lines.


Avian Pathology | 2008

Short-chain fatty acids and l-lactate as feed additives to control Campylobacter jejuni infections in broilers

Kim Van Deun; Freddy Haesebrouck; Filip Van Immerseel; Richard Ducatelle; Frank Pasmans

The usefulness of butyrate, acetate, propionate and l-lactate for the control of Campylobacter jejuni infections in broilers was assessed. For this purpose, the effect of these acids on the growth of C. jejuni in broth and intestinal mucous was determined, as well as their influence on the invasiveness of C. jejuni in intestinal epithelial cells. From these in vitro obtained results, one acid was retained for use as a feed additive in an in vivo trial. Butyrate was the most successful of the short-chain fatty acids, with 12.5 mM being bactericidal for C. jejuni at pH 6.0. Propionate and acetate had a bacteriostatic effect at 50 mM. None of the short-chain fatty acids had a bactericidal effect at pH 7.5 at a maximum concentration of 50 mM. Mucous increased the minimum bactericidal concentration of butyrate, but not the bacteriostatic concentrations of propionate or acetate. When C. jejuni was incubated in growth subinhibitory concentrations of butyrate, acetate or propionate or 25 mM l-lactate, no alteration in the invasive capabilities of C. jejuni in Caco-2 cells was observed. The addition of butyrate-coated micro-beads to the feed was unsuccessful to reduce C. jejuni caecal colonization in a seeder model using 2-week-old broilers. In conclusion, despite the marked bactericidal effect of butyrate towards C. jejuni in vitro, butyrate-coated micro-beads do not protect broilers from caecal colonization with C. jejuni in the applied test conditions. This might be partially ascribed to the protective effect of mucous and the rapid absorption of butyrate by the enterocytes.

Collaboration


Dive into the Kim Van Deun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge