Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kim W. McIntyre is active.

Publication


Featured researches published by Kim W. McIntyre.


Journal of Biological Chemistry | 2003

BMS-345541 Is a Highly Selective Inhibitor of IκB Kinase That Binds at an Allosteric Site of the Enzyme and Blocks NF-κB-dependent Transcription in Mice

James R. Burke; Mark A. Pattoli; Kurt R. Gregor; Patrick J. Brassil; John F. MacMaster; Kim W. McIntyre; Xiaoxia Yang; Violetta Iotzova; Wendy Clarke; Joann Strnad; Yuping Qiu; F. Christopher Zusi

The signal-inducible phosphorylation of serines 32 and 36 of IκBα is critical in regulating the subsequent ubiquitination and proteolysis of IκBα, which then releases NF-κB to promote gene transcription. The multisubunit IκB kinase responsible for this phosphorylation contains two catalytic subunits, termed IκB kinase (IKK)-1 and IKK-2. BMS-345541 (4(2′-aminoethyl)amino-1,8-dimethylimidazo(1,2-a)quinoxaline) was identified as a selective inhibitor of the catalytic subunits of IKK (IKK-2 IC50 = 0.3 μm, IKK-1 IC50 = 4 μm). The compound failed to inhibit a panel of 15 other kinases and selectively inhibited the stimulated phosphorylation of IκBα in cells (IC50 = 4 μm) while failing to affect c-Jun and STAT3 phosphorylation, as well as mitogen-activated protein kinase-activated protein kinase 2 activation in cells. Consistent with the role of IKK/NF-κB in the regulation of cytokine transcription, BMS-345541 inhibited lipopolysaccharide-stimulated tumor necrosis factor α, interleukin-1β, interleukin-8, and interleukin-6 in THP-1 cells with IC50 values in the 1- to 5-μmrange. Although a Dixon plot of the inhibition of IKK-2 by BMS-345541 showed a non-linear relationship indicating non-Michaelis-Menten kinetic binding, the use of multiple inhibition analyses indicated that BMS-345541 binds in a mutually exclusive manner with respect to a peptide inhibitor corresponding to amino acids 26–42 of IκBα with Ser-32 and Ser-36 changed to aspartates and in a non-mutually exclusive manner with respect to ADP. The opposite results were obtained when studying the binding to IKK-1. A binding model is proposed in which BMS-345541 binds to similar allosteric sites on IKK-1 and IKK-2, which then affects the active sites of the subunits differently. BMS-345541 was also shown to have excellent pharmacokinetics in mice, and peroral administration showed the compound to dose-dependently inhibit the production of serum tumor necrosis factor α following intraperitoneal challenge with lipopolysaccharide. Thus, the compound is effective against NF-κB activation in mice and represents an important tool for investigating the role of IKK in disease models.


Journal of Immunology | 2003

Phosphodiesterase 7A-Deficient Mice Have Functional T Cells

Guchen Yang; Kim W. McIntyre; Robert Townsend; Henry H. Shen; William J. Pitts; John H. Dodd; Steven G. Nadler; Murray McKinnon; Andrew Watson

Phosphodiesterases (PDEs) are enzymes which hydrolyze the cyclic nucleotide second messengers, cAMP and cGMP. In leukocytes, PDEs are responsible for depletion of cAMP which broadly suppresses cell functions and cellular responses to many activation stimuli. PDE7A has been proposed to be essential for T lymphocyte activation based on its induction during cell activation and the suppression of proliferation and IL-2 production observed following inhibition of PDE7A expression using a PDE7A antisense oligonucleotide. These observations have led to the suggestion that selective PDE7 inhibitors could be useful in the treatment of T cell-mediated autoimmune diseases. In the present report, we have used targeted gene disruption to examine the role PDE7A plays in T cell activation. In our studies, PDE7A knockout mice (PDE7A−/−) showed no deficiencies in T cell proliferation or Th1- and Th2-cytokine production driven by CD3 and CD28 costimulation. Unexpectedly, the Ab response to the T cell-dependent Ag, keyhole limpet hemocyanin, in the PDE7A−/− mice was found to be significantly elevated. The results from our studies strongly support the notion that PDE7A is not essential for T cell activation.


Journal of Medicinal Chemistry | 2010

Discovery of 4-(5-(Cyclopropylcarbamoyl)-2-methylphenylamino)-5-methyl-N-propylpyrrolo[1,2-f][1,2,4]triazine-6-carboxamide (BMS-582949), a Clinical p38α MAP Kinase Inhibitor for the Treatment of Inflammatory Diseases

Chunjian Liu; James Lin; Stephen T. Wrobleski; Shuqun Lin; John Hynes; Hong Wu; Alaric J. Dyckman; Tianle Li; John Wityak; Kathleen M. Gillooly; Sidney Pitt; Ding Ren Shen; Rosemary Zhang; Kim W. McIntyre; Luisa Salter-Cid; David J. Shuster; Hongjian Zhang; Punit Marathe; Arthur M. Doweyko; John S. Sack; Susan E. Kiefer; Kevin Kish; John A. Newitt; Murray McKinnon; John H. Dodd; Joel C. Barrish; Gary L. Schieven; Katerina Leftheris

The discovery and characterization of 7k (BMS-582949), a highly selective p38α MAP kinase inhibitor that is currently in phase II clinical trials for the treatment of rheumatoid arthritis, is described. A key to the discovery was the rational substitution of N-cyclopropyl for N-methoxy in 1a, a previously reported clinical candidate p38α inhibitor. Unlike alkyl and other cycloalkyls, the sp(2) character of the cyclopropyl group can confer improved H-bonding characteristics to the directly substituted amide NH. Inhibitor 7k is slightly less active than 1a in the p38α enzymatic assay but displays a superior pharmacokinetic profile and, as such, was more effective in both the acute murine model of inflammation and pseudoestablished rat AA model. The binding mode of 7k with p38α was confirmed by X-ray crystallographic analysis.


Journal of Pharmacology and Experimental Therapeutics | 2006

Selective Inhibition of Eosinophil Influx into the Lung by Small Molecule CC Chemokine Receptor 3 Antagonists in Mouse Models of Allergic Inflammation

Anuk Das; Krishna Vaddi; Kimberly A. Solomon; Candice M. Krauthauser; Xiaosui Jiang; Kim W. McIntyre; Xiao Xia Yang; Eric A. Wadman; Maryanne B. Covington; Danielle M. Graden; Krishnaswamy Yeleswaram; James M. Trzaskos; Robert Newton; Sandhya Mandlekar; Soo S. Ko; Percy H. Carter; Paul Davies

CC chemokine receptor (CCR) 3 is a chemokine receptor implicated in recruiting cells, particularly eosinophils (EΦ), to the lung in episodes of allergic asthma. To investigate the efficacy of selective, small molecule antagonists of CCR3, we developed a murine model of EΦ recruitment to the lung. Murine eotaxin was delivered intranasally to mice that had previously received i.p. injections of ovalbumin (OVA), and the effects were monitored by bronchoalveolar lavage. A selective eosinophilic influx was produced in animals receiving eotaxin but not saline. Furthermore, the number of EΦ was concentration- and time-dependent. Although anti-CCR3 antibody reduced the number of EΦ, the effect of eotaxin in OVA-sensitized mice was not a direct chemotactic stimulus because mast cell deficiency (in WBB6F1-Kitw/Kitw-v mice) significantly reduced the response. Two representative small molecule CCR3 antagonists from our program were characterized as being active at mouse CCR3. They were administered p.o. to wild-type mice and found to reduce eotaxin-elicited EΦ selectively in a dose-dependent manner. Pump infusion of one of the inhibitors to achieve steady-state levels showed that efficacy was not achieved at plasma concentrations equivalent to the in vitro chemotaxis IC90 but only at much higher concentrations. To extend the results from our recruitment model, we tested one of the inhibitors in an allergenic model of airway inflammation, generated by adoptive transfer of OVA-sensitive murine T helper 2 cells and aerosolized OVA challenge of recipient mice, and found that it inhibited EΦ recruitment. We conclude that small molecule CCR3 antagonists reduce pulmonary eosinophilic inflammation elicited by chemokine or allergenic challenge.


Journal of Biological Chemistry | 1995

Insertion of a Structural Domain of Interleukin (IL)-1β Confers Agonist Activity to the IL-1 Receptor Antagonist IMPLICATIONS FOR IL-1 BIOACTIVITY

Scott A. Greenfeder; Tracey Varnell; Gordon Powers; Kathleen Lombard-Gillooly; David J. Shuster; Kim W. McIntyre; Dene E. Ryan; Wayne Levin; Vincent S. Madison; Grace Ju

We showed previously that replacement of Lys-145 in the IL-1 receptor antagonist (IL-1ra) with Asp resulted in an analog (IL-1ra K145D) with partial agonist activity. To identify additional amino acids that affect IL-1 bioactivity, we created second site mutations in IL-1ra K145D. Substitutions of single amino acids surrounding position 145 were made; none of these substitutions increased the bioactivity of IL-1ra K145D. However, the insertion of the β-bulge (QGEESN) of IL-1β at the corresponding region of IL-1ra K145D resulted in a 3-4-fold augmentation of bioactivity. An additional increase in agonist activity was observed when the β-bulge was coexpressed with a second substitution (His-54 Pro) in IL-1ra K145D. We also show that the bioactivity of both IL-1ra K145D and the triple mutant IL-1ra K145D/H54P/QGEESN is dependent on interaction with the newly cloned IL-1 receptor accessory protein.


Journal of Medicinal Chemistry | 2010

Small molecule antagonist of leukocyte function associated antigen-1 (LFA-1): structure-activity relationships leading to the identification of 6-((5S,9R)-9-(4-cyanophenyl)-3-(3,5-dichlorophenyl)-1-methyl-2,4-dioxo-1,3,7-triazaspiro[4.4]nonan-7-yl)nicotinic acid (BMS-688521).

Scott H. Watterson; Zili Xiao; Dharmpal S. Dodd; David R. Tortolani; Wayne Vaccaro; Dominique Potin; Michele Launay; Dawn K. Stetsko; Stacey Skala; Patric M. Davis; Deborah Lee; Xiaoxia Yang; Kim W. McIntyre; Praveen Balimane; Karishma Patel; Zheng Yang; Punit Marathe; Pathanjali Kadiyala; Andrew J. Tebben; Steven Sheriff; ChiehYing Y. Chang; Theresa Ziemba; Huiping Zhang; Bang-Chi Chen; Albert J. DelMonte; Nelly Aranibar; Murray McKinnon; Joel C. Barrish; Suzanne J. Suchard; T. G. Murali Dhar

Leukocyte function-associated antigen-1 (LFA-1), also known as CD11a/CD18 or alpha(L)beta(2), belongs to the beta(2) integrin subfamily and is constitutively expressed on all leukocytes. The major ligands of LFA-1 include three intercellular adhesion molecules 1, 2, and 3 (ICAM 1, 2, and 3). The interactions between LFA-1 and the ICAMs are critical for cell adhesion, and preclinical animal studies and clinical data from the humanized anti-LFA-1 antibody efalizumab have provided proof-of-concept for LFA-1 as an immunological target. This article will detail the structure-activity relationships (SAR) leading to a novel second generation series of highly potent spirocyclic hydantoin antagonists of LFA-1. With significantly enhanced in vitro and ex vivo potency relative to our first clinical compound (1), as well as demonstrated in vivo activity and an acceptable pharmacokinetic and safety profile, 6-((5S,9R)-9-(4-cyanophenyl)-3-(3,5-dichlorophenyl)-1-methyl-2,4-dioxo-1,3,7-triazaspiro-[4.4]nonan-7-yl)nicotinic acid (2e) was selected to advance into clinical trials.


Bioorganic & Medicinal Chemistry Letters | 2008

Pyrazolo-Pyrimidines: A Novel Heterocyclic Scaffold for Potent and Selective P38 Alpha Inhibitors.

Jagabandhu Das; Robert V. Moquin; Sidney Pitt; Rosemary Zhang; Ding Ren Shen; Kim W. McIntyre; Kathleen M. Gillooly; Arthur M. Doweyko; John S. Sack; Hongjian Zhang; Susan E. Kiefer; Kevin Kish; Murray McKinnon; Joel C. Barrish; John H. Dodd; Gary L. Schieven; Katerina Leftheris

The synthesis and structure-activity relationships (SAR) of p38 alpha MAP kinase inhibitors based on a pyrazolo-pyrimidine scaffold are described. These studies led to the identification of compound 2x as a potent and selective inhibitor of p38 alpha MAP kinase with excellent cellular potency toward the inhibition of TNFalpha production. Compound 2x was highly efficacious in vivo in inhibiting TNFalpha production in an acute murine model of TNFalpha production. X-ray co-crystallography of a pyrazolo-pyrimidine analog 2b bound to unphosphorylated p38 alpha is also disclosed.


Journal of Immunology | 2010

An LFA-1 (αLβ2) Small-Molecule Antagonist Reduces Inflammation and Joint Destruction in Murine Models of Arthritis

Suzanne J. Suchard; Dawn K. Stetsko; Patricia M. Davis; Stacey Skala; Dominique Potin; Michele Launay; T. G. Murali Dhar; Joel C. Barrish; Vojkan Susulic; David J. Shuster; Kim W. McIntyre; Murray McKinnon; Luisa Salter-Cid

LFA-1 appears to play a central role in normal immune responses to foreign Ags. In autoimmune or inflammatory diseases, there is increased expression of LFA-1 and/or its counterligand, ICAM-1. Others have demonstrated that the targeted disruption of LFA-1:ICAM interactions, either by gene deletion or Ab treatment in mice, results in reduced leukocyte trafficking, inflammatory responses, and inhibition of inflammatory arthritis in the K/BxN serum transfer model. However, there has been little success in finding a small-molecule LFA-1 antagonist that can similarly impact rodent models of arthritis. In this paper, we present the first reported example of an LFA-1 small-molecule antagonist, BMS-587101, that is efficacious in preclinical disease models. In vitro, BMS-587101 inhibited LFA-1–mediated adhesion of T cells to endothelial cells, T cell proliferation, and Th1 cytokine production. Because BMS-587101 exhibits in vitro potency, cross-reactivity, and oral bioavailability in rodents, we evaluated the impact of oral administration of this compound in two different models of arthritis: Ab-induced arthritis and collagen-induced arthritis. Significant impact of BMS-587101 on clinical score in both models was observed, with inhibition comparable or better than anti-mouse LFA-1 Ab. In addition, BMS-587101 significantly reduced cytokine mRNA levels in the joints of Ab-induced arthritis animals as compared with those receiving vehicle alone. In paws taken from the collagen-induced arthritis study, the bones of vehicle-treated mice had extensive inflammation and bone destruction, whereas treatment with BMS-587101 resulted in marked protection. These findings support the potential use of an LFA-1 small-molecule antagonist in rheumatoid arthritis, with the capacity for disease modification.


Journal of Leukocyte Biology | 2006

A selective small molecule agonist of the melanocortin-1 receptor inhibits lipopolysaccharide-induced cytokine accumulation and leukocyte infiltration in mice

Liya Kang; Kim W. McIntyre; Kathleen M. Gillooly; Yifan Yang; John W. Haycock; Stephen Roberts; Ashish Khanna; Timothy Herpin; Guixue Yu; Ximao Wu; George C. Morton; Huji Tuerdi; Barry Koplowitz; Stephen G. Walker; Judy Wardwell-Swanson; John E. Macor; R. Michael Lawrence; Kenneth E. Carlson

It is well established that melanocortins are peptides that have potent anti‐inflammatory activity. Recent research has focused on understanding which of the known melanocortin receptors mediates the anti‐inflammatory actions of the melanocortins. The aim of this study was to assess the anti‐inflammatory activity of a synthetic MC‐1R agonist. BMS‐470539 is a potent, selective, full agonist of human and murine MC‐1R with EC50 values in a cAMP accumulation assay of 16.8 and 11.6 nM, respectively. BMS‐470539 dose‐dependently inhibited TNF‐α‐induced activation of a NF‐κB transcriptional reporter in human melanoma cells, which endogenously express MC‐1R. In vivo studies with BMS‐470539 demonstrated that subcutaneous administration of BMS‐470539 resulted in a dose‐dependent inhibition of LPS‐induced TNF‐α production in BALB/c mice. In this model, the compound had an ED50 of approximately 10 μmol/kg and a pharmacodynamic half‐life of ∼8 h. Pharmacokinetic analysis of the compound indicated that the compound had a t1/2 of 1.7 h. In a model of lung inflammation, administration of 15 μmol/kg BMS‐470539 resulted in a 45% reduction in LPS‐induced leukocyte infiltration (an infiltrate comprised primarily of neutrophils). The compound was also effective in a model of delayed‐type hypersensitivity, reducing paw swelling by 59%, comparable with that seen with 5 mg/kg dexamethasone. These studies demonstrate that a selective small molecule agonist of the melanocortin‐1 receptor is a potent anti‐inflammatory agent in vivo and provides compelling evidence for the involvement of this receptor in the modulation of inflammation.


Bioorganic & Medicinal Chemistry Letters | 2008

Synthesis and SAR of new pyrrolo[2,1-f][1,2,4]triazines as potent p38α MAP kinase inhibitors

Stephen T. Wrobleski; Shuqun Lin; John Hynes; Hong Wu; Sidney Pitt; Ding Ren Shen; Rosemary Zhang; Kathleen M. Gillooly; David J. Shuster; Kim W. McIntyre; Arthur M. Doweyko; Kevin Kish; Jeffrey Tredup; Gerald J. Duke; John S. Sack; Murray McKinnon; John H. Dodd; Joel C. Barrish; Gary L. Schieven; Katerina Leftheris

A novel series of compounds based on the pyrrolo[2,1-f][1,2,4]triazine ring system have been identified as potent p38 alpha MAP kinase inhibitors. The synthesis, structure-activity relationships (SAR), and in vivo activity of selected analogs from this class of inhibitors are reported. Additional studies based on X-ray co-crystallography have revealed that one of the potent inhibitors from this series binds to the DFG-out conformation of the p38 alpha enzyme.

Collaboration


Dive into the Kim W. McIntyre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge