Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Shuster is active.

Publication


Featured researches published by David J. Shuster.


Journal of Medicinal Chemistry | 2010

Discovery of 4-(5-(Cyclopropylcarbamoyl)-2-methylphenylamino)-5-methyl-N-propylpyrrolo[1,2-f][1,2,4]triazine-6-carboxamide (BMS-582949), a Clinical p38α MAP Kinase Inhibitor for the Treatment of Inflammatory Diseases

Chunjian Liu; James Lin; Stephen T. Wrobleski; Shuqun Lin; John Hynes; Hong Wu; Alaric J. Dyckman; Tianle Li; John Wityak; Kathleen M. Gillooly; Sidney Pitt; Ding Ren Shen; Rosemary Zhang; Kim W. McIntyre; Luisa Salter-Cid; David J. Shuster; Hongjian Zhang; Punit Marathe; Arthur M. Doweyko; John S. Sack; Susan E. Kiefer; Kevin Kish; John A. Newitt; Murray McKinnon; John H. Dodd; Joel C. Barrish; Gary L. Schieven; Katerina Leftheris

The discovery and characterization of 7k (BMS-582949), a highly selective p38α MAP kinase inhibitor that is currently in phase II clinical trials for the treatment of rheumatoid arthritis, is described. A key to the discovery was the rational substitution of N-cyclopropyl for N-methoxy in 1a, a previously reported clinical candidate p38α inhibitor. Unlike alkyl and other cycloalkyls, the sp(2) character of the cyclopropyl group can confer improved H-bonding characteristics to the directly substituted amide NH. Inhibitor 7k is slightly less active than 1a in the p38α enzymatic assay but displays a superior pharmacokinetic profile and, as such, was more effective in both the acute murine model of inflammation and pseudoestablished rat AA model. The binding mode of 7k with p38α was confirmed by X-ray crystallographic analysis.


Journal of Biological Chemistry | 1995

Insertion of a Structural Domain of Interleukin (IL)-1β Confers Agonist Activity to the IL-1 Receptor Antagonist IMPLICATIONS FOR IL-1 BIOACTIVITY

Scott A. Greenfeder; Tracey Varnell; Gordon Powers; Kathleen Lombard-Gillooly; David J. Shuster; Kim W. McIntyre; Dene E. Ryan; Wayne Levin; Vincent S. Madison; Grace Ju

We showed previously that replacement of Lys-145 in the IL-1 receptor antagonist (IL-1ra) with Asp resulted in an analog (IL-1ra K145D) with partial agonist activity. To identify additional amino acids that affect IL-1 bioactivity, we created second site mutations in IL-1ra K145D. Substitutions of single amino acids surrounding position 145 were made; none of these substitutions increased the bioactivity of IL-1ra K145D. However, the insertion of the β-bulge (QGEESN) of IL-1β at the corresponding region of IL-1ra K145D resulted in a 3-4-fold augmentation of bioactivity. An additional increase in agonist activity was observed when the β-bulge was coexpressed with a second substitution (His-54 Pro) in IL-1ra K145D. We also show that the bioactivity of both IL-1ra K145D and the triple mutant IL-1ra K145D/H54P/QGEESN is dependent on interaction with the newly cloned IL-1 receptor accessory protein.


Journal of Medicinal Chemistry | 2010

Dimethyl-diphenyl-propanamide derivatives as nonsteroidal dissociated glucocorticoid receptor agonists.

Bingwei V. Yang; David S. Weinstein; Lidia M. Doweyko; Hua Gong; Wayne Vaccaro; Tram N. Huynh; Hai-Yun Xiao; Arthur M. Doweyko; Lorraine I. McKay; Deborah A. Holloway; John E. Somerville; Sium Habte; Mark D. Cunningham; Michele McMahon; Robert Townsend; David J. Shuster; John H. Dodd; Steven G. Nadler; Joel C. Barrish

A series of 2,2-dimethyl-3,3-diphenyl-propanamides as novel glucocorticoid receptor modulators is reported. SAR exploration led to the identification of 4-hydroxyphenyl propanamide derivatives displaying good agonist activity in GR-mediated transrepression assays and reduced agonist activity in GR-mediated transactivation assays. Compounds 17 and 30 showed anti-inflammatory activity comparable to prednisolone in the rat carrageenan-induced paw edema model, with markedly decreased side effects with regard to increases in blood glucose and expression of hepatic tyrosine aminotransferase. A hypothetical binding mode accounting for the induction of the functional activity by a 4-hydroxyl group is proposed.


Journal of Immunology | 2010

An LFA-1 (αLβ2) Small-Molecule Antagonist Reduces Inflammation and Joint Destruction in Murine Models of Arthritis

Suzanne J. Suchard; Dawn K. Stetsko; Patricia M. Davis; Stacey Skala; Dominique Potin; Michele Launay; T. G. Murali Dhar; Joel C. Barrish; Vojkan Susulic; David J. Shuster; Kim W. McIntyre; Murray McKinnon; Luisa Salter-Cid

LFA-1 appears to play a central role in normal immune responses to foreign Ags. In autoimmune or inflammatory diseases, there is increased expression of LFA-1 and/or its counterligand, ICAM-1. Others have demonstrated that the targeted disruption of LFA-1:ICAM interactions, either by gene deletion or Ab treatment in mice, results in reduced leukocyte trafficking, inflammatory responses, and inhibition of inflammatory arthritis in the K/BxN serum transfer model. However, there has been little success in finding a small-molecule LFA-1 antagonist that can similarly impact rodent models of arthritis. In this paper, we present the first reported example of an LFA-1 small-molecule antagonist, BMS-587101, that is efficacious in preclinical disease models. In vitro, BMS-587101 inhibited LFA-1–mediated adhesion of T cells to endothelial cells, T cell proliferation, and Th1 cytokine production. Because BMS-587101 exhibits in vitro potency, cross-reactivity, and oral bioavailability in rodents, we evaluated the impact of oral administration of this compound in two different models of arthritis: Ab-induced arthritis and collagen-induced arthritis. Significant impact of BMS-587101 on clinical score in both models was observed, with inhibition comparable or better than anti-mouse LFA-1 Ab. In addition, BMS-587101 significantly reduced cytokine mRNA levels in the joints of Ab-induced arthritis animals as compared with those receiving vehicle alone. In paws taken from the collagen-induced arthritis study, the bones of vehicle-treated mice had extensive inflammation and bone destruction, whereas treatment with BMS-587101 resulted in marked protection. These findings support the potential use of an LFA-1 small-molecule antagonist in rheumatoid arthritis, with the capacity for disease modification.


Journal of Medicinal Chemistry | 2011

Azaxanthene Based Selective Glucocorticoid Receptor Modulators: Design, Synthesis, and Pharmacological Evaluation of (S)-4-(5-(1-((1,3,4-Thiadiazol-2-yl)amino)-2-methyl-1-oxopropan-2-yl)-5H-chromeno[2,3-b]pyridin-2-yl)-2-fluoro-N,N-dimethylbenzamide (BMS-776532) and Its Methylene Homologue (BMS-791826)

David S. Weinstein; Hua Gong; Arthur M. Doweyko; Mark D. Cunningham; Sium Habte; Jin Hong Wang; Deborah A. Holloway; Christine Burke; Ling Gao; Victor Guarino; Julie Carman; John E. Somerville; David J. Shuster; Luisa Salter-Cid; John H. Dodd; Steven G. Nadler; Joel C. Barrish

Structurally novel 5H-chromeno[2,3-b]pyridine (azaxanthene) selective glucocorticoid receptor (GR) modulators have been identified. A screening paradigm utilizing cellular assays of GR-mediated transrepression of proinflammatory transcription factors and transactivation of GR-dependent genes combined with three physiologically relevant assays of cytokine induction in human whole blood has allowed for the identification of high affinity, selective GR ligands that display a broad range of pharmacological profiles. Agonist efficacy in reporter assays can be tuned by halogenation of a pendent phenyl ring and correlates well with efficacy for cytokine inhibition in human whole blood. A hypothetical binding mode is proposed, invoking an expanded ligand binding pocket resembling that of arylpyrazole-bound GR structures. Two compounds of close structural similarity (35 and 37; BMS-776532 and BMS-791826, respectively) have been found to maintain distinct and consistent levels of partial agonist efficacy across several assays, displaying anti-inflammatory activity comparable to that of prednisolone 2 in suppressing cytokine production in whole blood and in rodent models of acute and chronic inflammation.


Bioorganic & Medicinal Chemistry Letters | 2008

Synthesis and SAR of new pyrrolo[2,1-f][1,2,4]triazines as potent p38α MAP kinase inhibitors

Stephen T. Wrobleski; Shuqun Lin; John Hynes; Hong Wu; Sidney Pitt; Ding Ren Shen; Rosemary Zhang; Kathleen M. Gillooly; David J. Shuster; Kim W. McIntyre; Arthur M. Doweyko; Kevin Kish; Jeffrey Tredup; Gerald J. Duke; John S. Sack; Murray McKinnon; John H. Dodd; Joel C. Barrish; Gary L. Schieven; Katerina Leftheris

A novel series of compounds based on the pyrrolo[2,1-f][1,2,4]triazine ring system have been identified as potent p38 alpha MAP kinase inhibitors. The synthesis, structure-activity relationships (SAR), and in vivo activity of selected analogs from this class of inhibitors are reported. Additional studies based on X-ray co-crystallography have revealed that one of the potent inhibitors from this series binds to the DFG-out conformation of the p38 alpha enzyme.


Bioorganic & Medicinal Chemistry Letters | 2002

C-3 Amido-Indole cannabinoid receptor modulators

John Hynes; Katerina Leftheris; Hong Wu; Chennagiri R. Pandit; Ping Chen; Derek J. Norris; Bang-Chi Chen; Rulin Zhao; Peter A. Kiener; Xiaorong Chen; Lori A. Turk; Vina Patil-Koota; Kathleen M. Gillooly; David J. Shuster; Kim W. McIntyre

C-3 Amido-indoles were found to selectively bind to the CB2 receptor. SAR studies led to optimized compounds with excellent in vivo potency against LPS induced TNF-alpha release in murine models of cytokine production.


Bioorganic & Medicinal Chemistry Letters | 2008

The discovery of (R)-2-(sec-butylamino)-N-(2-methyl-5-(methylcarbamoyl)phenyl) thiazole-5-carboxamide (BMS-640994)-A potent and efficacious p38alpha MAP kinase inhibitor.

John Hynes; Hong Wu; Sidney Pitt; Ding Ren Shen; Rosemary Zhang; Gary L. Schieven; Kathleen M. Gillooly; David J. Shuster; Tracy L. Taylor; Xiaoxia Yang; Kim W. McIntyre; Murray McKinnon; Hongjian Zhang; Punit Marathe; Arthur M. Doweyko; Kevin Kish; Susan E. Kiefer; John S. Sack; John A. Newitt; Joel C. Barrish; John H. Dodd; Katerina Leftheris

A novel structural class of p38alpha MAP kinase inhibitors has been identified via iterative SAR studies of a focused deck screen hit. Optimization of the lead series generated 6e, BMS-640994, a potent and selective p38alpha inhibitor that is orally efficacious in rodent models of acute and chronic inflammation.


Journal of Medicinal Chemistry | 2016

Potent and Selective Agonists of Sphingosine 1-Phosphate 1 (S1P1): Discovery and SAR of a Novel Isoxazole Based Series

Scott H. Watterson; Junqing Guo; Steve Spergel; Charles M. Langevine; Robert V. Moquin; Ding Ren Shen; Melissa Yarde; Mary Ellen Cvijic; Dana Banas; Richard Liu; Suzanne J. Suchard; Kathleen M. Gillooly; Tracy L. Taylor; Sandra Rex-Rabe; David J. Shuster; Kim W. McIntyre; Georgia Cornelius; Celia D’Arienzo; Anthony Marino; Praveen Balimane; Bethanne M. Warrack; Luisa Salter-Cid; Murray McKinnon; Joel C. Barrish; Percy H. Carter; William J. Pitts; Jenny Xie; Alaric J. Dyckman

Sphingosine 1-phosphate (S1P) is the endogenous ligand for the sphingosine 1-phosphate receptors (S1P1-5) and evokes a variety of cellular responses through their stimulation. The interaction of S1P with the S1P receptors plays a fundamental physiological role in a number of processes including vascular development and stabilization, lymphocyte migration, and proliferation. Agonism of S1P1, in particular, has been shown to play a significant role in lymphocyte trafficking from the thymus and secondary lymphoid organs, resulting in immunosuppression. This article will detail the discovery and SAR of a potent and selective series of isoxazole based full agonists of S1P1. Isoxazole 6d demonstrated impressive efficacy when administered orally in a rat model of arthritis and in a mouse experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery of pyrrolo[2,1-f][1,2,4]triazine C6-ketones as potent, orally active p38α MAP kinase inhibitors

Alaric J. Dyckman; Tianle Li; Sidney Pitt; Rosemary Zhang; Ding Ren Shen; Kim W. McIntyre; Kathleen M. Gillooly; David J. Shuster; Arthur M. Doweyko; John S. Sack; Kevin Kish; Susan E. Kiefer; John A. Newitt; Hongjian Zhang; Punit Marathe; Murray McKinnon; Joel C. Barrish; John H. Dodd; Gary L. Schieven; Katerina Leftheris

Pyrrolo[2,1-f][1,2,4]triazine based inhibitors of p38α have been prepared exploring functional group modifications at the C6 position. Incorporation of aryl and heteroaryl ketones at this position led to potent inhibitors with efficacy in in vivo models of acute and chronic inflammation.

Collaboration


Dive into the David J. Shuster's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge