Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kimberly A. Dill-McFarland is active.

Publication


Featured researches published by Kimberly A. Dill-McFarland.


Scientific Reports | 2017

Gut microbiome alterations in Alzheimer's disease.

Nicholas M. Vogt; Robert L. Kerby; Kimberly A. Dill-McFarland; Sandra Harding; Andrew P. Merluzzi; Sterling C. Johnson; Cynthia M. Carlsson; Sanjay Asthana; Henrik Zetterberg; Kaj Blennow; Barbara B. Bendlin; Federico E. Rey

Alzheimer’s disease (AD) is the most common form of dementia. However, the etiopathogenesis of this devastating disease is not fully understood. Recent studies in rodents suggest that alterations in the gut microbiome may contribute to amyloid deposition, yet the microbial communities associated with AD have not been characterized in humans. Towards this end, we characterized the bacterial taxonomic composition of fecal samples from participants with and without a diagnosis of dementia due to AD. Our analyses revealed that the gut microbiome of AD participants has decreased microbial diversity and is compositionally distinct from control age- and sex-matched individuals. We identified phylum- through genus-wide differences in bacterial abundance including decreased Firmicutes, increased Bacteroidetes, and decreased Bifidobacterium in the microbiome of AD participants. Furthermore, we observed correlations between levels of differentially abundant genera and cerebrospinal fluid (CSF) biomarkers of AD. These findings add AD to the growing list of diseases associated with gut microbial alterations, as well as suggest that gut bacterial communities may be a target for therapeutic intervention.


Molecular Ecology | 2014

Hibernation alters the diversity and composition of mucosa‐associated bacteria while enhancing antimicrobial defence in the gut of 13‐lined ground squirrels

Kimberly A. Dill-McFarland; Katie L. Neil; Austin Zeng; Ryan J. Sprenger; Courtney C. Kurtz; Garret Suen; Hannah V. Carey

The gut microbiota plays important roles in animal nutrition and health. This relationship is particularly dynamic in hibernating mammals where fasting drives the gut community to rely on host‐derived nutrients instead of exogenous substrates. We used 16S rRNA pyrosequencing and caecal tissue protein analysis to investigate the effects of hibernation on the mucosa‐associated bacterial microbiota and host responses in 13‐lined ground squirrels. The mucosal microbiota was less diverse in winter hibernators than in actively feeding spring and summer squirrels. UniFrac analysis revealed distinct summer and late winter microbiota clusters, while spring and early winter clusters overlapped slightly, consistent with their transitional structures. Communities in all seasons were dominated by Firmicutes and Bacteroidetes, with lesser contributions from Proteobacteria, Verrucomicrobia, Tenericutes and Actinobacteria. Hibernators had lower relative abundances of Firmicutes, which include genera that prefer plant polysaccharides, and higher abundances of Bacteroidetes and Verrucomicrobia, some of which can survive solely on host‐derived mucins. A core mucosal assemblage of nine operational taxonomic units shared among all individuals was identified with an average total sequence abundance of 60.2%. This core community, together with moderate shifts in specific taxa, indicates that the mucosal microbiota remains relatively stable over the annual cycle yet responds to substrate changes while potentially serving as a pool for ‘seeding’ the microbiota once exogenous substrates return in spring. Relative to summer, hibernation reduced caecal crypt length and increased MUC2 expression in early winter and spring. Hibernation also decreased caecal TLR4 and increased TLR5 expression, suggesting a protective response that minimizes inflammation.


Scientific Reports | 2017

Microbial succession in the gastrointestinal tract of dairy cows from 2 weeks to first lactation

Kimberly A. Dill-McFarland; Jacob D. Breaker; Garret Suen

Development of the dairy calf gastrointestinal tract (GIT) and its associated microbiota are essential for survival and milk production, as this community is responsible for converting plant-based feeds into accessible nutrients. However, little is known regarding the establishment of microbes in the calf GIT. Here, we measured fecal-associated bacterial, archaeal, and fungal communities of dairy cows from 2 weeks to the middle of first lactation (>2 years) as well as rumen-associated communities from weaning (8 weeks) to first lactation. These communities were then correlated to animal growth and health. Although succession of specific operational taxonomic units (OTUs) was unique to each animal, beta-diversity decreased while alpha-diversity increased as animals aged. Calves exhibited similar microbial families and genera but different OTUs than adults, with a transition to an adult-like microbiota between weaning and 1 year of age. This suggests that alterations of the microbiota for improving downstream milk production may be most effective during, or immediately following, the weaning transition.


Environmental Microbiology | 2016

Diet specialization selects for an unusual and simplified gut microbiota in two‐ and three‐toed sloths

Kimberly A. Dill-McFarland; Paul J. Weimer; Jonathan N. Pauli; M. Zachariah Peery; Garret Suen

Symbiotic microbial communities are critical to the function and survival of animals. This relationship is obligatory for herbivores that engage gut microorganisms for the conversion of dietary plant materials into nutrients such as short-chain organic acids (SCOAs). The constraint on body size imposed by their arboreal lifestyle is thought to make this symbiosis especially important for sloths. Here, we use next-generation sequencing to identify the bacteria present in the fore and distal guts of wild two- and three-toed sloths, and correlate these communities with both diet and SCOAs. We show that, unlike other mammalian herbivores, sloth gut communities are dominated by the bacterial phyla Proteobacteria and Firmicutes. Specifically, three-toed sloths possess a highly conserved, low-diversity foregut community with a highly abundant Neisseria species associated with foregut lactate. In contrast, two-toed sloths have a more variable and diverse foregut microbiota correlated with a variety of SCOAs. These differences support the hypothesis that feeding behaviour selects for specific gut bacterial communities, as three-toed sloths subsist primarily on Cecropia tree leaves while two-toed sloths have a more generalist diet. The less diverse diet and gut microbiota of three-toed sloths may render them more susceptible to habitat loss and other diet-altering conditions.


Scientific Reports | 2016

The human laryngeal microbiome: effects of cigarette smoke and reflux

Marie E. Jetté; Kimberly A. Dill-McFarland; Alissa S. Hanshew; Garret Suen; Susan L. Thibeault

Prolonged diffuse laryngeal inflammation from smoking and/or reflux is commonly diagnosed as chronic laryngitis and treated empirically with expensive drugs that have not proven effective. Shifts in microbiota have been associated with many inflammatory diseases, though little is known about how resident microbes may contribute to chronic laryngitis. We sought to characterize the core microbiota of disease-free human laryngeal tissue and to investigate shifts in microbial community membership associated with exposure to cigarette smoke and reflux. Using 454 pyrosequencing of the 16S rRNA gene, we compared bacterial communities of laryngeal tissue biopsies collected from 97 non-treatment-seeking volunteers based on reflux and smoking status. The core community was characterized by a highly abundant OTU within the family Comamonadaceae found in all laryngeal tissues. Smokers demonstrated less microbial diversity than nonsmokers, with differences in relative abundances of OTUs classified as Streptococcus, unclassified Comamonadaceae, Cloacibacterium, and Helicobacter. Reflux status did not affect microbial diversity nor community structure nor composition. Comparison of healthy laryngeal microbial communities to benign vocal fold disease samples revealed greater abundance of Streptococcus in benign vocal fold disease suggesting that mucosal dominance by Streptococcus may be a factor in disease etiology.


Frontiers in Microbiology | 2016

Dietary Shifts May Trigger Dysbiosis and Mucous Stools in Giant Pandas (Ailuropoda melanoleuca)

Candace L. Williams; Kimberly A. Dill-McFarland; Michael W. Vandewege; Darrell L. Sparks; S. T. Willard; Andrew J. Kouba; Garret Suen; Ashli Brown

Dietary shifts can result in changes to the gastrointestinal tract (GIT) microbiota, leading to negative outcomes for the host, including inflammation. Giant pandas (Ailuropoda melanoleuca) are physiologically classified as carnivores; however, they consume an herbivorous diet with dramatic seasonal dietary shifts and episodes of chronic GIT distress with symptoms including abdominal pain, loss of appetite and the excretion of mucous stools (mucoids). These episodes adversely affect the overall nutritional and health status of giant pandas. Here, we examined the fecal microbiota of two giant pandas’ non-mucoid and mucoid stools and compared these to samples from a previous winter season that had historically few mucoid episodes. To identify the microbiota present, we isolated and sequenced the 16S rRNA using next-generation sequencing. Mucoids occurred following a seasonal feeding switch from predominately bamboo culm (stalk) to leaves. All fecal samples displayed low diversity and were dominated by bacteria in the phyla Firmicutes and to a lesser extent, Proteobacteria. Fecal samples immediately prior to mucoid episodes had lower microbial diversity as compared to mucoids. Mucoids were mostly comprised of common mucosal-associated taxa including Streptococcus and Leuconostoc species, and exhibited increased abundance for bacteria in the family Pasteurellaceae. Taken together, these findings indicate that mucoids may represent an expulsion of the mucosal lining that is driven by changes in diet. We suggest that these occurrences serve to reset their GIT microbiota following changes in bamboo part preference, as giant pandas have retained a carnivorous GIT anatomy while shifting to an herbivorous diet.


Frontiers in Microbiology | 2017

Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves

Juliana Dias; Marcos Inácio Marcondes; Melline F. Noronha; Rafael Tassinari Resende; F.S. Machado; Hilário Cuquetto Mantovani; Kimberly A. Dill-McFarland; Garret Suen

At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed) on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days). Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea, and Succinivribrio). Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides, and Parabacteroides). In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces. Relative anaerobic fungal abundances did not change significantly in response to diet or age, likely due to high inter-animal variation and the low fiber content of starter concentrate. This study provides new insights into the colonization of archaea, bacteria, and anaerobic fungi communities in pre-ruminant calves that may be useful in designing strategies to promote colonization of target communities to improve functional development.


Trends in Microbiology | 2016

Bears Arouse Interest in Microbiota's Role in Health

Kimberly A. Dill-McFarland; Garret Suen; Hannah V. Carey

The first report of the effect of hibernation on the gut microbiota of bears reveals trends both similar and distinct from those found in small hibernators. A model mouse system also suggested possible roles of the microbiota for healthy weight gain and insulin tolerance in bears during their active season.


Systematic and Applied Microbiology | 2017

Assessing the impact of rumen microbial communities on methane emissions and production traits in Holstein cows in a tropical climate

Camila S. Cunha; Cristina Mattos Veloso; Marcos Inácio Marcondes; Hilário Cuquetto Mantovani; T.R. Tomich; Luiz Gustavo Ribeiro Pereira; Matheus F.L. Ferreira; Kimberly A. Dill-McFarland; Garret Suen

The evaluation of how the gut microbiota affects both methane emissions and animal production is necessary in order to achieve methane mitigation without production losses. Toward this goal, the aim of this study was to correlate the rumen microbial communities (bacteria, archaea, and fungi) of high (HP), medium (MP), and low milk producing (LP), as well as dry (DC), Holstein dairy cows in an actual tropical production system with methane emissions and animal production traits. Overall, DC cows emitted more methane, followed by MP, HP and LP cows, although HP and LP cow emissions were similar. Using next-generation sequencing, it was found that bacteria affiliated with Christensenellaceae, Mogibacteriaceae, S24-7, Butyrivibrio, Schwartzia, and Treponema were negatively correlated with methane emissions and showed positive correlations with digestible dry matter intake (dDMI) and digestible organic matter intake (dOMI). Similar findings were observed for archaea in the genus Methanosphaera. The bacterial groups Coriobacteriaceae, RFP12, and Clostridium were negatively correlated with methane, but did not correlate with dDMI and dOMI. For anaerobic fungal communities, no significant correlations with methane or animal production traits were found. Based on these findings, it is suggested that manipulation of the abundances of these microbial taxa may be useful for modulating methane emissions without negatively affecting animal production.


Frontiers in Microbiology | 2017

Camelina Seed Supplementation at Two Dietary Fat Levels Change Ruminal Bacterial Community Composition in a Dual-Flow Continuous Culture System

X. Dai; Paul J. Weimer; Kimberly A. Dill-McFarland; V.L.N. Brandao; Garret Suen; A.P. Faciola

This experiment aimed to determine the effects of camelina seed (CS) supplementation at different dietary fat levels on ruminal bacterial community composition and how it relates to changes in ruminal fermentation in a dual-flow continuous culture system. Diets were randomly assigned to 8 fermenters (1,200–1,250 mL) in a 2 × 2 factorial arrangement of treatments in a replicated 4 × 4 Latin square with four 10-day experimental periods that consisted of 7 days for diet adaptation and 3 days for sample collection. Treatments were: (1) no CS at 5% ether extract (EE, NCS5); (2) no CS at 8% EE (NCS8); (3) 7.7% CS at 5% EE (CS5); and (4) 17.7% CS at 8% EE (CS8). Megalac was used as a control to adjust EE levels. Diets contained 55% orchardgrass hay and 45% concentrate, and fermenters were equally fed a total of 72 g/day (DM basis) twice daily. The bacterial community was determined by sequencing the V4 region of the 16S rRNA gene using the Illumina MiSeq platform. Sequencing data were analyzed using mothur and statistical analyses were performed in R and SAS. The most abundant phyla across treatments were the Bacteroidetes and Firmicutes, accounting for 49 and 39% of the total sequences, respectively. The bacterial community composition in both liquid and solid fractions of the effluent digesta changed with CS supplementation but not by dietary EE. Including CS in the diets decreased the relative abundances of Ruminococcus spp., Fibrobacter spp., and Butyrivibrio spp. The most abundant genus across treatments, Prevotella, was reduced by high dietary EE levels, while Megasphaera and Succinivibrio were increased by CS supplementation in the liquid fraction. Correlatively, the concentration of acetate was decreased while propionate increased; C18:0 was decreased and polyunsaturated fatty acids, especially C18:2 n-6 and C18:3 n-3, were increased by CS supplementation. Based on the correlation analysis between genera and fermentation end products, this study revealed that CS supplementation could be energetically beneficial to dairy cows by increasing propionate-producing bacteria and suppressing ruminal bacteria associated with biohydrogenation. However, attention should be given to avoid the effects of CS supplementation on suppressing cellulolytic bacteria.

Collaboration


Dive into the Kimberly A. Dill-McFarland's collaboration.

Top Co-Authors

Avatar

Garret Suen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcos Inácio Marcondes

Universidade Federal de Viçosa

View shared research outputs
Top Co-Authors

Avatar

Paul J. Weimer

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna K. Barker

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Ashli Brown

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Candace L. Williams

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Darrell L. Sparks

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Federico E. Rey

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge