Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Federico E. Rey is active.

Publication


Featured researches published by Federico E. Rey.


Nature | 2012

Human gut microbiome viewed across age and geography

Tanya Yatsunenko; Federico E. Rey; Mark Manary; Indi Trehan; Maria Gloria Dominguez-Bello; Monica Contreras; Magda Magris; Glida Hidalgo; Robert N. Baldassano; Andrey P. Anokhin; Andrew C. Heath; Barbara B. Warner; Jens Reeder; Justin Kuczynski; J. Gregory Caporaso; Catherine A. Lozupone; Christian L. Lauber; Jose C. Clemente; Dan Knights; Rob Knight; Jeffrey I. Gordon

Gut microbial communities represent one source of human genetic and metabolic diversity. To examine how gut microbiomes differ among human populations, here we characterize bacterial species in fecal samples from 531 individuals, plus the gene content of 110 of them. The cohort encompassed healthy children and adults from the Amazonas of Venezuela, rural Malawi and US metropolitan areas and included mono- and dizygotic twins. Shared features of the functional maturation of the gut microbiome were identified during the first three years of life in all three populations, including age-associated changes in the genes involved in vitamin biosynthesis and metabolism. Pronounced differences in bacterial assemblages and functional gene repertoires were noted between US residents and those in the other two countries. These distinctive features are evident in early infancy as well as adulthood. Our findings underscore the need to consider the microbiome when evaluating human development, nutritional needs, physiological variations and the impact of westernization.


Science Translational Medicine | 2009

The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice

Peter J. Turnbaugh; Vanessa K. Ridaura; Jeremiah J. Faith; Federico E. Rey; Rob Knight; Jeffrey I. Gordon

A translational medicine pipeline is described where human gut microbial communities and diets are re-created in gnotobiotic mice and the impact on microbe and host is defined using metagenomics. Are You a Man or a Mouse? Answer: Both Comedian Bill Maher targets obese people with his satire almost as often as he does politicians. But clinical obesity is no joke. The World Health Organization estimates the number of obese people worldwide to be 300 million. Add to that the fact that obesity increases one’s risk for a whole stable of serious illnesses—type II diabetes, stroke, and some cancers—and you have one large global disease burden. Scientists and sociologists cite several hypotheses regarding the causes of the obesity epidemic, such as minimal physical exercise, high-fructose corn syrup, and diets of low-cost, large-portion, fat-filled foods. But pinpointing obesity triggers in humans is hard because of uncontrollable genetic, cultural, and environmental variables. Recently, researchers have thrown another element into the mix: the human gut microbiota. A massive number of microbes make the human gut their home. Highly diverse and numbering in the tens of trillions, our microbial companions help shape our human physiology, including effects on metabolism. The extent of their influence is now the subject of intense study in large part because high-capacity, moderately priced DNA sequencing has allowed our microbial communities and their collections of genes (“the microbiome”) to be characterized without having to culture the component organisms. However, this is a challenging business: Studying the factors that shape the assembly and operations of these communities is difficult to do in humans, given our varied genotypes, our difficult-to-document choices of what we eat, and our different environmental exposures. Enter Turnbaugh et al., who add a new tool to the toolbox of translational medicine: mice that only harbor human-derived microbes and that can be reared under conditions where potentially confounding variables encountered in human studies can be controlled. To recreate a model human gut ecosystem, they transplanted human fecal matter into germ-free mice. They show that the transplant was remarkably successful: Recipient animals carried a collection of bacteria that mimicked the human donor’s microbiota. Moreover, the transplanted community could be transmitted from generation to generation of gnotobiotic mice. When these humanized animals were switched from a low-fat, plant-rich diet to a high-fat, high-sugar diet, the microbiota was changed after only 1 day on the junk-food binge. The authors were able to measure microbiome gene content and expression to further understand how the community responded to this diet shift. Like their Homo sapiens counterparts, Western diet–fed humanized mice become obese. Remarkably, this increased adiposity phenotype can be transmitted to other mice, at least for a time, by transplanting their gut microbiota to germ-free recipients. Human microbiome investigators are seeking to extend their descriptive studies. The humanized mice described by Turnbaugh et al. now provide a well-controlled system not only for assaying the functional properties of gut communities harvested from humans with different phenotypes, but also for conducting proof-of-principle “clinical” trials to show how a “host” of factors, including our diets, may influence our microbiota and how in turn our microbiota shapes our health and disease predispositions. Diet and nutritional status are among the most important modifiable determinants of human health. The nutritional value of food is influenced in part by a person’s gut microbial community (microbiota) and its component genes (microbiome). Unraveling the interrelations among diet, the structure and operations of the gut microbiota, and nutrient and energy harvest is confounded by variations in human environmental exposures, microbial ecology, and genotype. To help overcome these problems, we created a well-defined, representative animal model of the human gut ecosystem by transplanting fresh or frozen adult human fecal microbial communities into germ-free C57BL/6J mice. Culture-independent metagenomic analysis of the temporal, spatial, and intergenerational patterns of bacterial colonization showed that these humanized mice were stably and heritably colonized and reproduced much of the bacterial diversity of the donor’s microbiota. Switching from a low-fat, plant polysaccharide–rich diet to a high-fat, high-sugar “Western” diet shifted the structure of the microbiota within a single day, changed the representation of metabolic pathways in the microbiome, and altered microbiome gene expression. Reciprocal transplants involving various combinations of donor and recipient diets revealed that colonization history influences the initial structure of the microbial community but that these effects can be rapidly altered by diet. Humanized mice fed the Western diet have increased adiposity; this trait is transmissible via microbiota transplantation. Humanized gnotobiotic mice will be useful for conducting proof-of-principle “clinical trials” that test the effects of environmental and genetic factors on the gut microbiota and host physiology.


Science | 2013

Gut microbiota from twins discordant for obesity modulate metabolism in mice.

Vanessa K. Ridaura; Jeremiah J. Faith; Federico E. Rey; Jiye Cheng; Alexis E. Duncan; Andrew L. Kau; Nicholas W. Griffin; Vincent Lombard; Bernard Henrissat; James R. Bain; Michael J. Muehlbauer; Olga Ilkayeva; Clay F. Semenkovich; Katsuhiko Funai; David K. Hayashi; Barbara J. Lyle; Margaret C. Martini; Luke K. Ursell; Jose C. Clemente; William Van Treuren; William A. Walters; Rob Knight; Christopher B. Newgard; Andrew C. Heath; Jeffrey I. Gordon

Introduction Establishing whether specific structural and functional configurations of a human gut microbiota are causally related to a given physiologic or disease phenotype is challenging. Twins discordant for obesity provide an opportunity to examine interrelations between obesity and its associated metabolic disorders, diet, and the gut microbiota. Transplanting the intact uncultured or cultured human fecal microbiota from each member of a discordant twin pair into separate groups of recipient germfree mice permits the donors’ communities to be replicated, differences between their properties to be identified, the impact of these differences on body composition and metabolic phenotypes to be discerned, and the effects of diet-by-microbiota interactions to be analyzed. In addition, cohousing coprophagic mice harboring transplanted microbiota from discordant pairs provides an opportunity to determine which bacterial taxa invade the gut communities of cage mates, how invasion correlates with host phenotypes, and how invasion and microbial niche are affected by human diets. Cohousing Ln and Ob mice prevents increased adiposity in Ob cage mates (Ob). (A) Adiposity change after 10 days of cohousing. *P < 0.05 versus Ob controls (Student’s t test). (B) Bacteroidales from Ln microbiota invade Ob microbiota. Columns show individual mice. Methods Separate groups of germfree mice were colonized with uncultured fecal microbiota from each member of four twin pairs discordant for obesity or with culture collections from an obese (Ob) or lean (Ln) co-twin. Animals were fed a mouse chow low in fat and rich in plant polysaccharides, or one of two diets reflecting the upper or lower tertiles of consumption of saturated fats and fruits and vegetables based on the U.S. National Health and Nutrition Examination Survey (NHANES). Ln or Ob mice were cohoused 5 days after colonization. Body composition changes were defined by quantitative magnetic resonance. Microbiota or microbiome structure, gene expression, and metabolism were assayed by 16S ribosomal RNA profiling, whole-community shotgun sequencing, RNA-sequencing, and mass spectrometry. Host gene expression and metabolism were also characterized. Results and Discussion The intact uncultured and culturable bacterial component of Ob co-twins’ fecal microbiota conveyed significantly greater increases in body mass and adiposity than those of Ln communities. Differences in body composition were correlated with differences in fermentation of short-chain fatty acids (increased in Ln), metabolism of branched-chain amino acids (increased in Ob), and microbial transformation of bile acid species (increased in Ln and correlated with down-regulation of host farnesoid X receptor signaling). Cohousing Ln and Ob mice prevented development of increased adiposity and body mass in Ob cage mates and transformed their microbiota’s metabolic profile to a leanlike state. Transformation correlated with invasion of members of Bacteroidales from Ln into Ob microbiota. Invasion and phenotypic rescue were diet-dependent and occurred with the diet representing the lower tertile of U.S. consumption of saturated fats, and upper tertile of fruits and vegetables, but not with the diet representing the upper tertile of saturated fats, and lower tertile of fruit and vegetable consumption. These results reveal that transmissible and modifiable interactions between diet and microbiota influence host biology. Transforming Fat to Thin How much does the microbiota influence the hosts phenotype? Ridaura et al. (1241214 ; see the Perspective by Walker and Parkhill) obtained uncultured fecal microbiota from twin pairs discordant for body mass and transplanted them into adult germ-free mice. It was discovered that adiposity is transmissible from human to mouse and that it was associated with changes in serum levels of branched-chain amino acids. Moreover, obese-phenotype mice were invaded by members of the Bacteroidales from the lean mice, but, happily, the lean animals resisted invasion by the obese microbiota. Mice carrying gut bacteria from lean humans protect their cage mates from the effects of gut bacteria from fat humans. [Also see Perspective by Walker and Parkhill] The role of specific gut microbes in shaping body composition remains unclear. We transplanted fecal microbiota from adult female twin pairs discordant for obesity into germ-free mice fed low-fat mouse chow, as well as diets representing different levels of saturated fat and fruit and vegetable consumption typical of the U.S. diet. Increased total body and fat mass, as well as obesity-associated metabolic phenotypes, were transmissible with uncultured fecal communities and with their corresponding fecal bacterial culture collections. Cohousing mice harboring an obese twin’s microbiota (Ob) with mice containing the lean co-twin’s microbiota (Ln) prevented the development of increased body mass and obesity-associated metabolic phenotypes in Ob cage mates. Rescue correlated with invasion of specific members of Bacteroidetes from the Ln microbiota into Ob microbiota and was diet-dependent. These findings reveal transmissible, rapid, and modifiable effects of diet-by-microbiota interactions.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41.

Buck S. Samuel; Abdullah Shaito; Toshiyuki Motoike; Federico E. Rey; Fredrik Bäckhed; Jill K. Manchester; Robert E. Hammer; S. Clay Williams; Jan R. Crowley; Masashi Yanagisawa; Jeffrey I. Gordon

The distal human intestine harbors trillions of microbes that allow us to extract calories from otherwise indigestible dietary polysaccharides. The products of polysaccharide fermentation include short-chain fatty acids that are ligands for Gpr41, a G protein-coupled receptor expressed by a subset of enteroendocrine cells in the gut epithelium. To examine the contribution of Gpr41 to energy balance, we compared Gpr41−/− and Gpr41+/+ mice that were either conventionally-raised with a complete gut microbiota or were reared germ-free and then cocolonized as young adults with two prominent members of the human distal gut microbial community: the saccharolytic bacterium, Bacteroides thetaiotaomicron and the methanogenic archaeon, Methanobrevibacter smithii. Both conventionally-raised and gnotobiotic Gpr41−/− mice colonized with the model fermentative community are significantly leaner and weigh less than their WT (+/+) littermates, despite similar levels of chow consumption. These differences are not evident when germ-free WT and germ-free Gpr41 knockout animals are compared. Functional genomic, biochemical, and physiologic studies of germ-free and cocolonized Gpr41−/− and +/+ littermates disclosed that Gpr41-deficiency is associated with reduced expression of PYY, an enteroendocrine cell-derived hormone that normally inhibits gut motility, increased intestinal transit rate, and reduced harvest of energy (short-chain fatty acids) from the diet. These results reveal that Gpr41 is a regulator of host energy balance through effects that are dependent upon the gut microbiota.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla

Michael A. Mahowald; Federico E. Rey; Henning Seedorf; Peter J. Turnbaugh; Robert S. Fulton; Aye Wollam; Neha Shah; Chunyan Wang; Vincent Magrini; Richard Wilson; Brandi L. Cantarel; Pedro M. Coutinho; Bernard Henrissat; Lara W. Crock; Alison Russell; Nathan C. VerBerkmoes; Robert L. Hettich; Jeffrey I. Gordon

The adult human distal gut microbial community is typically dominated by 2 bacterial phyla (divisions), the Firmicutes and the Bacteroidetes. Little is known about the factors that govern the interactions between their members. Here, we examine the niches of representatives of both phyla in vivo. Finished genome sequences were generated from Eubacterium rectale and E. eligens, which belong to Clostridium Cluster XIVa, one of the most common gut Firmicute clades. Comparison of these and 25 other gut Firmicutes and Bacteroidetes indicated that the Firmicutes possess smaller genomes and a disproportionately smaller number of glycan-degrading enzymes. Germ-free mice were then colonized with E. rectale and/or a prominent human gut Bacteroidetes, Bacteroides thetaiotaomicron, followed by whole-genome transcriptional profiling, high-resolution proteomic analysis, and biochemical assays of microbial–microbial and microbial–host interactions. B. thetaiotaomicron adapts to E. rectale by up-regulating expression of a variety of polysaccharide utilization loci encoding numerous glycoside hydrolases, and by signaling the host to produce mucosal glycans that it, but not E. rectale, can access. E. rectale adapts to B. thetaiotaomicron by decreasing production of its glycan-degrading enzymes, increasing expression of selected amino acid and sugar transporters, and facilitating glycolysis by reducing levels of NADH, in part via generation of butyrate from acetate, which in turn is used by the gut epithelium. This simplified model of the human gut microbiota illustrates niche specialization and functional redundancy within members of its major bacterial phyla, and the importance of host glycans as a nutrient foundation that ensures ecosystem stability.


Science | 2011

Predicting a Human Gut Microbiota’s Response to Diet in Gnotobiotic Mice

Jeremiah J. Faith; Nathan P. McNulty; Federico E. Rey; Jeffrey I. Gordon

Model microbial communities in mouse guts respond quickly and predictably to dietary shifts. The interrelationships between our diets and the structure and operations of our gut microbial communities are poorly understood. A model community of 10 sequenced human gut bacteria was introduced into gnotobiotic mice, and changes in species abundance and microbial gene expression were measured in response to randomized perturbations of four defined ingredients in the host diet. From the responses, we developed a statistical model that predicted over 60% of the variation in species abundance evoked by diet perturbations, and we were able to identify which factors in the diet best explained changes seen for each community member. The approach is generally applicable, as shown by a follow-up study involving diets containing various mixtures of pureed human baby foods.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation

Jennifer L. Pluznick; Ryan J. Protzko; Haykanush Gevorgyan; Zita Peterlin; Arnold Sipos; Jinah Han; Isabelle Brunet; La Xiang Wan; Federico E. Rey; Tong Wang; Stuart Firestein; Masashi Yanagisawa; Jeffrey I. Gordon; Anne Eichmann; Janos Peti-Peterdi; Michael J. Caplan

Olfactory receptors are G protein-coupled receptors that mediate olfactory chemosensation and serve as chemosensors in other tissues. We find that Olfr78, an olfactory receptor expressed in the kidney, responds to short chain fatty acids (SCFAs). Olfr78 is expressed in the renal juxtaglomerular apparatus, where it mediates renin secretion in response to SCFAs. In addition, both Olfr78 and G protein-coupled receptor 41 (Gpr41), another SCFA receptor, are expressed in smooth muscle cells of small resistance vessels. Propionate, a SCFA shown to induce vasodilation ex vivo, produces an acute hypotensive response in wild-type mice. This effect is differentially modulated by disruption of Olfr78 and Gpr41 expression. SCFAs are end products of fermentation by the gut microbiota and are absorbed into the circulation. Antibiotic treatment reduces the biomass of the gut microbiota and elevates blood pressure in Olfr78 knockout mice. We conclude that SCFAs produced by the gut microbiota modulate blood pressure via Olfr78 and Gpr41.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2002

The Reactive Adventitia Fibroblast Oxidase in Vascular Function

Federico E. Rey; Patrick J. Pagano

Abstract—The vascular adventitia is activated in a variety of cardiovascular disease states and has recently been shown to be a barrier to nitric oxide bioactivity. Vascular fibroblasts produce substantial amounts of NAD(P)H oxidase–derived reactive oxygen species (ROS) that appear to be involved in fibroblast proliferation, connective tissue deposition, and perhaps vascular tone. However, the physiological and pathophysiological roles of the adventitia have not been extensively studied, possibly because of its location in large blood vessels remote from the vascular endothelium. In recent years, substantial information has been gathered on pathways leading to oxidase activation in smooth muscle cells and fibroblasts and the downstream signaling pathways leading to hypertrophy and proliferation. A clearer understanding of the molecular mechanisms involved will likely lead to therapeutic strategies aimed at preventing vascular dysfunction in diseases such as atherosclerosis, in which these pathways are activated.


Circulation | 2000

Vascular effects following homozygous disruption of p47(phox) : An essential component of NADPH oxidase.

Eileen Hsich; Brahm H. Segal; Patrick J. Pagano; Federico E. Rey; Beverly Paigen; John R. Deleonardis; Robert F. Hoyt; Steven M. Holland; Toren Finkel

BACKGROUND Evidence suggests that the vessel wall contains an oxidase similar, if not identical, to phagocytic NADPH oxidase. We tested the contribution of this specific oxidase to the progression of atherosclerosis and the regulation of blood pressure. METHODS AND RESULTS An examination of aortic rings from wild-type mice and mice with homozygous targeted disruptions in p47(phox) revealed that p47(phox) knockout mice had a reduction in vascular superoxide production. However, analyses of apoE -/- p47(phox)+/+ and apoE -/- p47(phox) -/- strains of mice demonstrated no significant differences in atherosclerotic lesion sizes. Similarly, analyses of wild-type and p47(phox) knockout mice revealed no differences in either basal blood pressure or the rise in blood pressure seen after the pharmacological inhibition of nitric oxide synthase. CONCLUSIONS NADPH oxidase contributes to basal vascular superoxide production. However, the absence of a functional oxidase does not significantly affect the progression of atherosclerosis in the standard mouse apoE -/- model, nor does it significantly influence basal blood pressure.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins

Elizabeth E. Hansen; Catherine A. Lozupone; Federico E. Rey; Meng Wu; Janaki L. Guruge; Aneesha Narra; Jonathan Goodfellow; Jesse Zaneveld; Daniel McDonald; Julia Goodrich; Andrew C. Heath; Rob Knight; Jeffrey I. Gordon

The human gut microbiota harbors three main groups of H2-consuming microbes: methanogens including the dominant archaeon, Methanobrevibacter smithii, a polyphyletic group of acetogens, and sulfate-reducing bacteria. Defining their roles in the gut is important for understanding how hydrogen metabolism affects the efficiency of fermentation of dietary components. We quantified methanogens in fecal samples from 40 healthy adult female monozygotic (MZ) and 28 dizygotic (DZ) twin pairs, analyzed bacterial 16S rRNA datasets generated from their fecal samples to identify taxa that co-occur with methanogens, sequenced the genomes of 20 M. smithii strains isolated from families of MZ and DZ twins, and performed RNA-Seq of a subset of strains to identify their responses to varied formate concentrations. The concordance rate for methanogen carriage was significantly higher for MZ versus DZ twin pairs. Co-occurrence analysis revealed 22 bacterial species-level taxa positively correlated with methanogens: all but two were members of the Clostridiales, with several being, or related to, known hydrogen-producing and -consuming bacteria. The M. smithii pan-genome contains 987 genes conserved in all strains, and 1,860 variably represented genes. Strains from MZ and DZ twin pairs had a similar degree of shared genes and SNPs, and were significantly more similar than strains isolated from mothers or members of other families. The 101 adhesin-like proteins (ALPs) in the pan-genome (45 ± 6 per strain) exhibit strain-specific differences in expression and responsiveness to formate. We hypothesize that M. smithii strains use their different repertoires of ALPs to create diversity in their metabolic niches, by allowing them to establish syntrophic relationships with bacterial partners with differing metabolic capabilities and patterns of co-occurrence.

Collaboration


Dive into the Federico E. Rey's collaboration.

Top Co-Authors

Avatar

Jeffrey I. Gordon

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kymberleigh A. Romano

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugenio I. Vivas

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jeremiah J. Faith

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Rob Knight

University of California

View shared research outputs
Top Co-Authors

Avatar

Robert L. Kerby

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Kazuyuki Kasahara

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Vanessa K. Ridaura

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge