Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kimberly Genareau is active.

Publication


Featured researches published by Kimberly Genareau.


Journal of Applied Volcanology | 2013

The size range of bubbles that produce ash during explosive volcanic eruptions

Kimberly Genareau; Gopal K. Mulukutla; Alexander A. Proussevitch; Adam J. Durant; William I. Rose; Dork L. Sahagian

Volcanic eruptions can produce ash particles with a range of sizes and morphologies. Here we morphologically distinguish two textural types: Simple (generally smaller) ash particles, where the observable surface displays a single measureable bubble because there is at most one vesicle imprint preserved on each facet of the particle; and complex ash particles, which display multiple vesicle imprints on their surfaces for measurement and may contain complete, unfragmented vesicles in their interiors. Digital elevation models from stereo-scanning electron microscopic images of complex ash particles from the 14 October 1974 sub-Plinian eruption of Volcán Fuego, Guatemala and the 18 May 1980 Plinian eruption of Mount St. Helens, Washington, U.S.A. reveal size distributions of bubbles that burst during magma fragmentation. Results were compared between these two well-characterized eruptions of different explosivities and magma compositions and indicate that bubble size distributions (BSDs) are bimodal, suggesting a minimum of two nucleation events during both eruptions. The larger size mode has a much lower bubble number density (BND) than the smaller size mode, yet these few larger bubbles represent the bulk of the total bubble volume. We infer that the larger bubbles reflect an earlier nucleation event (at depth within the conduit) with subsequent diffusive and decompressive bubble growth and possible coalescence during magma ascent, while the smaller bubbles reflect a relatively later nucleation event occurring closer in time to the point of fragmentation. Bubbles in the Mount St. Helens complex ash particles are generally smaller, but have a total number density roughly one order of magnitude higher, compared to the Fuego samples. Results demonstrate that because ash from explosive eruptions preserves the size of bubbles that nucleated in the magma, grew, and then burst during fragmentation, the analysis of the ash-sized component of tephra can provide insights into the spatial distribution of bubbles in the magma prior to fragmentation, enabling better parameterization of numerical eruption models and improved understanding of ash transport phenomena that result in pyroclastic volcanic hazards. Additionally, the fact that the ash-sized component of tephra preserves BSDs and BNDs consistent with those preserved in larger pyroclasts indicates that these values can be obtained in cases where only distal ash samples from particular eruptions are obtainable.


Geology | 2015

Lightning-induced volcanic spherules

Kimberly Genareau; John B. Wardman; Thomas Wilson; Stephen R. McNutt; Pavel E. Izbekov

Glass spherules have been documented in many geologic deposits and are formed during high-temperature processes that include cloud-to-ground lightning strikes, volcanic eruptions of low-viscosity magmas, and meteorite impacts. This study reviews the known glass spherule– forming processes and proposes, for the first time, a mechanism induced through the heat generated by volcanic lightning in eruptive columns and plumes (laterally spreading clouds) during explosive eruptions. Ash-fall samples were collected from two eruptions where volcanic lightning was extensively documented: the A.D. 2009 eruption of Mount Redoubt, Alaska (USA), and the 2010 eruption of Eyjafjallajokull, Iceland. These samples reveal individual glass spherules ~50 mm in average diameter that compose <5% of the examined portion of the deposit. Textures include smooth, hollow, or cracked spherules, as well as aggregates, which suggest melting of ash particles as a result of proximity to the electrical discharge channel and subsequent re-solidification of the particles into spherical morphologies. The natural ash-fall samples are compared with pseudo-ash samples collected from high-voltage insulator experiments in order to test our hypothesis that volcanic ash particles can be transformed into glass spherules through the heat generated by electrical discharge. We refer to this new morphological classification of ash grains as lightning-induced volcanic spherules and hypothesize that this texture not only provides direct physical evidence of lightning occurrence during explosive eruptions, but will also increase settling velocities and reduce aggregation of these particles, affecting ash transport dynamics.


Journal of Geophysical Research | 2017

Size limits for rounding of volcanic ash particles heated by lightning

Fabian B. Wadsworth; Jérémie Vasseur; Edward W. Llewellin; Kimberly Genareau; Corrado Cimarelli; Donald B. Dingwell

Abstract Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high‐temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1‐D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters—capillary, Fourier, Stark, Biot, and Peclet numbers—to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension‐driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first‐order estimate of lightning conditions in volcanic plumes.


Geological Society, London, Special Publications | 2015

Effects of volatile behaviour on dome collapse and resultant pyroclastic surge dynamics: Gunung Merapi 2010 eruption

Kimberly Genareau; Shane J. Cronin; Gert Lube

Abstract In 2010, Gunung Merapi (Central Java, Indonesia) generated two violent eruption sequences on 26 October and 5 November culminating in widespread pyroclastic density currents (PDCs) associated with the destruction of lava domes. Tephra from PDC deposits were analysed to examine pre-dome collapse volatile behaviour and evidence of carbonate assimilation. Secondary-ion mass spectroscopy (SIMS) depth profiles of plagioclase phenocrysts reveal that the 7Li/30Si ratios in 26 October products are higher in the glass compared to the crystal, indicating a build-up of Li in the groundmass not observed in the 5 November samples. Higher Li in the groundmass suggests gas accumulation and rapid development of conduit overpressure in the shallow plumbing system prior to the initial 26 October explosion, which was only captured through the behaviour of quickly diffusing Li and not H2O. Following the explosion-induced decompression, juvenile magma rapidly ascended in great volume to generate extremely destructive PDCs following subsequent dome collapses, particularly on 5 November. Additionally, 26 October tephras contain carbonate grains in the ash component and abundant CO2 within the lava lapilli groundmass glass, which supports previous studies indicating assimilation of calc-silicate lithologies by the Merapi magma at depth in the plumbing system prior to the onset of 2010 activity. supplementary material: Feldspar microlite compositions and SIMS volatile data for the glass measurements are available at http://www.geolsoc.org.uk/SUP18762.


Geological Society, London, Memoirs | 2014

Chapter 17 Petrological and geochemical variation during the Soufrière Hills eruption, 1995 to 2010

T. Christopher; Madeleine C. S. Humphreys; Jenni Barclay; Kimberly Genareau; Sarah M.H. De Angelis; Melissa Plail; Amy Donovan

Abstract The andesite lava erupted at the Soufrière Hills Volcano (SHV) is crystal-rich with 33–63% phenocrysts of plagioclase (65%), amphibole (28%), orthopyroxene (7%), and minor Fe–Ti oxide and clinopyroxene microphenocrysts. The andesite hosts mafic enclaves that have similar mineral phases to the andesite. The enclaves are generally crystal-poor but can have up to 27% of inherited phenocrysts from the andesite, the majority of which are plagioclase. The eruption is defined by discrete periods of extrusion called phases, separated by pauses. The enclaves exhibit bulk geochemical trends that are consistent with fractionation. We infer that the intruded mafic liquids of Phases I and II interacted and assimilated plutonic residue remaining from the multiple prior mafic intrusions, while the basaltic liquids from Phases III and V assimilated relatively little material. We also infer a change in the basaltic composition coming from depth. The bulk Fe contents of both magma types are coupled and they both show a systematic interphase variation in Fe content. We interpret the coupled Fe variation to be due to contamination of the andesite from the intruding basalt via diffusion and advection processes, resulting in the erupted andesite products bearing the geochemical imprint of the syn-eruptive enclaves.


Scientific Reports | 2017

The Elusive Evidence of Volcanic Lightning

Kimberly Genareau; P. Gharghabi; J. Gafford; Michael S. Mazzola

Lightning strikes are known to morphologically alter and chemically reduce geologic formations and deposits, forming fulgurites. A similar process occurs as the result of volcanic lightning discharge, when airborne volcanic ash is transformed into lightning-induced volcanic spherules (LIVS). Here, we adapt the calculations used in previous studies of lightning-induced damage to infrastructure materials to determine the effects on pseudo-ash samples of simplified composition. Using laboratory high-current impulse experiments, this research shows that within the lightning discharge channel there is an ideal melting zone that represents roughly 10% or less of the total channel radius at which temperatures are sufficient to melt the ash, regardless of peak current. The melted ash is simultaneously expelled from the channel by the heated, expanding air, permitting particles to cool during atmospheric transport before coming to rest in ash fall deposits. The limited size of this ideal melting zone explains the low number of LIVS typically observed in volcanic ash despite the frequent occurrence of lightning during explosive eruptions.


Journal of Geophysical Research | 2016

Posteruptive impacts of pyroclastic deposits from basaltic andesite stratovolcanoes on surface water composition

Kimberly Genareau; Shane J. Cronin; Carol Stewart; S. Bhattacharyya; R. Donahoe

Volcanic ash deposition following explosive eruptions can pose significant hazards for water quality, human health, agriculture, and infrastructure functionality. Many studies have examined how fresh ash deposition may lower the pH of, and introduce a range of potentially toxic elements into, exposed surface waters. However, no study has yet determined the effects on water composition as a result of mechanical pyroclast disaggregation and production of new fresh particle surfaces and increasingly fine grained particles. Such disaggregation could result from natural posteruptive processes such as debris avalanches, lahars, or fluvial/aeolian transport and human activities such as cleanup efforts or mining of pyroclastic deposits. The posteruption time scales of pyroclast disaggregation may vary from months in moist tropical or temperate environments to years or decades in arid settings. Here we show, for the first time in experimental studies, that mechanical milling of pyroclasts will introduce a range of elements into exposed waters, including Al, which can be toxic at elevated levels, and Na, which increases the electrical conductivity of solutions. The pH of leaching solutions also increases by several log units. Such dramatic changes on the experimental scale may have implications for surface water composition in posteruptive settings, necessitating longer-term risk assessments for ecosystem health and consideration of the role of pyroclastic deposits in element cycling in volcanically active regions.


Measurement Science and Technology | 2017

Whole object surface area and volume of partial-view 3D models

Gopal K. Mulukutla; Kimberly Genareau; Adam J. Durant; Alexander A. Proussevitch

A technique for estimating a whole object surface area and volume of a micro-scale three-dimensional model with a partially visible surface includes receiving a single-view stereoscopic image of an object of interest and an unconstrained three-dimensional point cloud of the object, generating a constrained three-dimensional point cloud using the image, the unconstrained three-dimensional point cloud, and a digital elevation model (DEM) of the object generated from the image, generating, using the constrained three-dimensional point cloud, a three-dimensional mesh representing an estimate of the surface of the object, calculating a partial surface area and/or partial volume of the object using the three-dimensional mesh, estimating an extent of a visible surface of the object, and calculating a whole surface area and/or a whole volume of the object based on the partial surface area of the object and the estimated extent of the visible surface of the object.


NUCLEATION AND ATMOSPHERIC AEROSOLS: 19th International Conference | 2013

Deposition and immersion mode nucleation of ice by three distinct samples of volcanic ash

Gregory P. Schill; Kimberly Genareau; Margaret A. Tolbert

The depositional and immersion mode ice nucleation efficiency of volcanic ash has been explored using a Raman microscope coupled to an environmental cell. Three separate ash samples from geographically distinct regions were specifically chosen to contain varying amounts of metal oxides and crystalline material, which could be integral factors in determining the inherent ice nucleation ability of each ash sample. Preliminary studies indicate that the samples have similar ice nucleating ability in the deposition mode. Ongoing studies are probing immersion freezing. In both cases, a range of ice active surface densities will be calculated, as well as an analysis of the effect of ash composition on ice nucleation ability.


Atmospheric Chemistry and Physics | 2015

Deposition and immersion-mode nucleation of ice by three distinct samples of volcanic ash

Gregory P. Schill; Kimberly Genareau; Margaret A. Tolbert

Collaboration


Dive into the Kimberly Genareau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gopal K. Mulukutla

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Margaret A. Tolbert

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge