Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kimberly N. Kremer is active.

Publication


Featured researches published by Kimberly N. Kremer.


Journal of Immunology | 2003

Distinct Role of ZAP-70 and Src Homology 2 Domain-Containing Leukocyte Protein of 76 kDa in the Prolonged Activation of Extracellular Signal-Regulated Protein Kinase by the Stromal Cell-Derived Factor-1α/CXCL12 Chemokine

Kimberly N. Kremer; Troy D. Humphreys; Ashok Kumar; Nan Xin Qian; Karen E. Hedin

Stimulation of T lymphocytes with the ligand for the CXCR4 chemokine receptor stromal cell-derived factor-1α (SDF-1α/CXCL12), results in prolonged activation of the extracellular signal-regulated kinases (ERK) ERK1 and ERK2. Because SDF-1α is unique among several chemokines in its ability to stimulate prolonged ERK activation, this pathway is thought to mediate special functions of SDF-1α that are not shared with other chemokines. However, the molecular mechanisms of this response are poorly understood. In this study we show that SDF-1α stimulation of prolonged ERK activation in Jurkat T cells requires both the ZAP-70 tyrosine kinase and the Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76) scaffold protein. This pathway involves ZAP-70-dependent tyrosine phosphorylation of SLP-76 at one or more of its tyrosines, 113, 128, and 145. Because TCR activates ERK via SLP-76-mediated activation of the linker of activated T cells (LAT) scaffold protein, we examined the role of LAT in SDF-1α-mediated ERK activation. However, neither the SLP-76 proline-rich domain that links to GADS and LAT, nor LAT, itself are required for SDF-1α to stimulate SLP-76 tyrosine phosphorylation or to activate ERK. Together, our results describe the distinct mechanism by which SDF-1α stimulates prolonged ERK activation in T cells and indicate that this pathway is specific for cells expressing both ZAP-70 and SLP-76.


Journal of Immunology | 2011

Gα13 and Rho Mediate Endosomal Trafficking of CXCR4 into Rab11+ Vesicles upon Stromal Cell-Derived Factor-1 Stimulation

Ashok Kumar; Kimberly N. Kremer; Daniel Dominguez; Madhavi Tadi; Karen E. Hedin

CXCR4, like other G protein-coupled receptors, signals via heterotrimeric guanine nucleotide-binding proteins (G proteins) to regulate gene transcription, migration, development, growth, and transformation. We describe a formerly uncharacterized function of a G protein: a role in receptor trafficking. We previously showed that CXCR4 and the TCR physically associate and form a heterodimer upon stromal cell-derived factor-1 or CXCL12 (SDF-1) stimulation in human T cells to prolong ERK activation and, thereby, lead to gene upregulation and cytokine secretion. The CXCR4–TCR heterodimers occur on the cell surface and in an intracellular compartment in response to SDF-1. Neither the intracellular compartment to which the CXCR4–TCR heterodimers localize nor the mechanism for localization has been elucidated. In this article, we characterize molecular mechanisms required for postendocytic trafficking of CXCR4. Upon SDF-1 stimulation, CXCR4 localizes to Rab11+ vesicles, a recycling compartment near the microtubule organizing center and Golgi apparatus. This trafficking requires the CXCR4 C-terminal tail domain but not the CXCR4 ubiquitination sites. The TCR also constitutively localizes to this Rab11+ compartment. Trafficking of CXCR4 into the Rab11+, TCR-containing endosomes requires actin polymerization. Furthermore, inhibiting Rho activation or depleting Gα13 prevented trafficking of CXCR4 into the Rab11+ endosomes without hindering the ability of CXCR4 to endocytose. These results indicated that, upon SDF-1 treatment, Gα13 and Rho mediate the actin polymerization necessary for trafficking CXCR4 into the Rab11+, recycling endosomal compartment, which also contains constitutively recycling TCR and, thus, CXCR4–TCR heterodimers. To our knowledge, this is the first report of Gα13 as a mediator of receptor trafficking.


Journal of Immunology | 2011

Stromal Cell-Derived Factor-1 Signaling via the CXCR4-TCR Heterodimer Requires Phospholipase C-β3 and Phospholipase C-γ1 for Distinct Cellular Responses

Kimberly N. Kremer; Ian C. Clift; Alexander G. Miamen; Adebowale O. Bamidele; Nan Xin Qian; Troy D. Humphreys; Karen E. Hedin

The CXCR4 chemokine receptor is a G protein-coupled receptor that signals in T lymphocytes by forming a heterodimer with the TCR. CXCR4 and TCR functions are consequently highly cross regulated, affecting T cell immune activation, cytokine secretion, and T cell migration. The CXCR4-TCR heterodimer stimulates T cell migration and activation of the ERK MAPK and downstream AP-1–dependent cytokine transcription in response to stromal cell-derived factor-1 (SDF-1), the sole chemokine ligand of CXCR4. These responses require Gi-type G proteins as well as TCR ITAM domains and the ZAP70 tyrosine kinase, thus indicating that the CXCR4-TCR heterodimer signals to integrate G protein-coupled receptor-associated and TCR-associated signaling molecules in response to SDF-1. Yet, the phospholipase C (PLC) isozymes responsible for coupling the CXCR4-TCR heterodimer to distinct downstream cellular responses are incompletely characterized. In this study, we demonstrate that PLC activity is required for SDF-1 to induce ERK activation, migration, and CXCR4 endocytosis in human T cells. SDF-1 signaling via the CXCR4-TCR heterodimer uses PLC-β3 to activate the Ras-ERK pathway and increase intracellular calcium ion concentrations, whereas PLC-γ1 is dispensable for these outcomes. In contrast, PLC-γ1, but not PLC-β3, is required for SDF-1–mediated migration via a mechanism independent of LAT. These results increase understanding of the signaling mechanisms employed by the CXCR4-TCR heterodimer, characterize new roles for PLC-β3 and PLC-γ1 in T cells, and suggest that multiple PLCs may also be activated downstream of other chemokine receptors to distinctly regulate migration versus other signaling functions.


Journal of Biological Chemistry | 2013

CXCR4 chemokine receptor signaling induces apoptosis in acute myeloid leukemia cells via regulation of the Bcl-2 family members Bcl-XL, Noxa, and Bak.

Kimberly N. Kremer; Kevin L. Peterson; Paula A. Schneider; X. Wei Meng; Haiming Dai; Allan D. Hess; B. Douglas Smith; Christie Rodriguez-Ramirez; Judith E. Karp; Scott H. Kaufmann; Karen E. Hedin

Background: The chemokine receptor CXCR4 plays a role in AML. Results: SDF-1, the ligand of CXCR4, induces apoptosis in AML cell lines and patient samples via modulation of Bcl-2 family members. Conclusion: SDF-1 induces apoptosis of AML cells via up-regulation of Bak and Noxa and down-regulation of Bcl-XL. Significance: SDF-1/CXCR4 signaling could induce AML cell apoptosis if bone marrow survival cues can be disrupted. The CXCR4 chemokine receptor promotes survival of many different cell types. Here, we describe a previously unsuspected role for CXCR4 as a potent inducer of apoptosis in acute myeloid leukemia (AML) cell lines and a subset of clinical AML samples. We show that SDF-1, the sole ligand for CXCR4, induces the expected migration and ERK activation in the KG1a AML cell line transiently overexpressing CXCR4, but ERK activation did not lead to survival. Instead, SDF-1 treatment led via a CXCR4-dependent mechanism to apoptosis, as evidenced by increased annexin V staining, condensation of chromatin, and cleavage of both procaspase-3 and PARP. This SDF-1-induced death pathway was partially inhibited by hypoxia, which is often found in the bone marrow of AML patients. SDF-1-induced apoptosis was inhibited by dominant negative procaspase-9 but not by inhibition of caspase-8 activation, implicating the intrinsic apoptotic pathway. Further analysis showed that this pathway was activated by multiple mechanisms, including up-regulation of Bak at the level of mRNA and protein, stabilization of the Bak activator Noxa, and down-regulation of antiapoptotic Bcl-XL. Furthermore, adjusting expression levels of Bak, Bcl-XL, or Noxa individually altered the level of apoptosis in AML cells, suggesting that the combined modulation of these family members by SDF-1 coordinates their interplay to produce apoptosis. Thus, rather than mediating survival, SDF-1 may be a means to induce apoptosis of CXCR4-expressing AML cells directly in the SDF-1-rich bone marrow microenvironment if the survival cues of the bone marrow are disrupted.


Journal of Immunology | 2007

Haplotype-independent costimulation of IL-10 secretion by SDF-1/CXCL12 proceeds via AP-1 binding to-the human IL-10 promoter

Kimberly N. Kremer; Ashok Kumar; Karen E. Hedin

Costimulation by the chemokine, stromal cell-derived factor-1 (SDF-1)/CXCL12, has been shown to increase the amount of IL-10 secreted by TCR-stimulated human T cells; however, the molecular mechanisms of this response are unknown. Knowledge of this signaling pathway may be useful because extensive evidence indicates that deficient IL-10 secretion promotes autoimmunity. The human IL-10 locus is highly polymorphic. We report in this study that SDF-1 costimulates IL-10 secretion from T cells containing all three of the most common human IL-10 promoter haplotypes that are identified by single-nucleotide polymorphisms at −1082, −819, and −592 bp (numbering is relative to the transcription start site). We further show that SDF-1 primarily costimulates IL-10 secretion by a diverse population of CD45RA− (“memory”) phenotype T cells that includes cells expressing the presumed regulatory T cell marker, Foxp3. To address the molecular mechanisms of this response, we showed that SDF-1 costimulates the transcriptional activities in normal human T cells of reporter plasmids containing 1.1 kb of all three of the common IL-10 promoter haplotypes. IL-10 promoter activity was ablated by mutating two nonpolymorphic binding sites for the AP-1 transcription factor, and chromatin immunoprecipitation assays of primary human T cells revealed that SDF-1 costimulation enhances AP-1 binding to both of these sites. Together, these results delineate the molecular mechanisms responsible for SDF-1 costimulation of T cell IL-10 secretion. Because it is preserved among several human haplotypes and in diverse T cell populations including Foxp3+ T cells, this pathway of IL-10 regulation may represent a key mechanism for modulating expression of this important immunoregulatory cytokine.


Molecular Pharmacology | 2014

β-Arrestin1 and Distinct CXCR4 Structures Are Required for Stromal Derived Factor-1 to Downregulate CXCR4 Cell-Surface Levels in Neuroblastoma

Ian C. Clift; Adebowale O. Bamidele; Christie Rodriguez-Ramirez; Kimberly N. Kremer; Karen E. Hedin

CXC chemokine receptor 4 (CXCR4) is a G protein–coupled receptor (GPCR) located on the cell surface that signals upon binding the chemokine stromal derived factor-1 (SDF-1; also called CXCL 12). CXCR4 promotes neuroblastoma proliferation and chemotaxis. CXCR4 expression negatively correlates with prognosis and drives neuroblastoma growth and metastasis in mouse models. All functions of CXCR4 require its expression on the cell surface, yet the molecular mechanisms that regulate CXCR4 cell-surface levels in neuroblastoma are poorly understood. We characterized CXCR4 cell-surface regulation in the related SH-SY5Y and SK-N-SH human neuroblastoma cell lines. SDF-1 treatment caused rapid down-modulation of CXCR4 in SH-SY5Y cells. Pharmacologic activation of protein kinase C similarly reduced CXCR4, but via a distinct mechanism. Analysis of CXCR4 mutants delineated two CXCR4 regions required for SDF-1 treatment to decrease cell-surface CXCR4 in neuroblastoma cells: the isoleucine-leucine motif at residues 328 and 329 and residues 343–352. In contrast, and unlike CXCR4 regulation in other cell types, serines 324, 325, 338, and 339 were not required. Arrestin proteins can bind and regulate GPCR cell-surface expression, often functioning together with kinases such as G protein–coupled receptor kinase 2 (GRK2). Using SK-N-SH cells which are naturally deficient in β-arrestin1, we showed that β-arrestin1 is required for the CXCR4 343–352 region to modulate CXCR4 cell-surface expression following treatment with SDF-1. Moreover, GRK2 overexpression enhanced CXCR4 internalization, via a mechanism requiring both β-arrestin1 expression and the 343–352 region. Together, these results characterize CXCR4 structural domains and β-arrestin1 as critical regulators of CXCR4 cell-surface expression in neuroblastoma. β-Arrestin1 levels may therefore influence the CXCR4-driven metastasis of neuroblastoma as well as prognosis.


Molecular Pharmacology | 2014

β-arrestin1 and distinct CXCR4 structures are required for SDF-1 to down-regulate CXCR4 cell-surface levels in neuroblastoma

Ian C. Clift; Adebowale O. Bamidele; Christie Rodriguez-Ramirez; Kimberly N. Kremer; Karen E. Hedin

CXC chemokine receptor 4 (CXCR4) is a G protein–coupled receptor (GPCR) located on the cell surface that signals upon binding the chemokine stromal derived factor-1 (SDF-1; also called CXCL 12). CXCR4 promotes neuroblastoma proliferation and chemotaxis. CXCR4 expression negatively correlates with prognosis and drives neuroblastoma growth and metastasis in mouse models. All functions of CXCR4 require its expression on the cell surface, yet the molecular mechanisms that regulate CXCR4 cell-surface levels in neuroblastoma are poorly understood. We characterized CXCR4 cell-surface regulation in the related SH-SY5Y and SK-N-SH human neuroblastoma cell lines. SDF-1 treatment caused rapid down-modulation of CXCR4 in SH-SY5Y cells. Pharmacologic activation of protein kinase C similarly reduced CXCR4, but via a distinct mechanism. Analysis of CXCR4 mutants delineated two CXCR4 regions required for SDF-1 treatment to decrease cell-surface CXCR4 in neuroblastoma cells: the isoleucine-leucine motif at residues 328 and 329 and residues 343–352. In contrast, and unlike CXCR4 regulation in other cell types, serines 324, 325, 338, and 339 were not required. Arrestin proteins can bind and regulate GPCR cell-surface expression, often functioning together with kinases such as G protein–coupled receptor kinase 2 (GRK2). Using SK-N-SH cells which are naturally deficient in β-arrestin1, we showed that β-arrestin1 is required for the CXCR4 343–352 region to modulate CXCR4 cell-surface expression following treatment with SDF-1. Moreover, GRK2 overexpression enhanced CXCR4 internalization, via a mechanism requiring both β-arrestin1 expression and the 343–352 region. Together, these results characterize CXCR4 structural domains and β-arrestin1 as critical regulators of CXCR4 cell-surface expression in neuroblastoma. β-Arrestin1 levels may therefore influence the CXCR4-driven metastasis of neuroblastoma as well as prognosis.


Journal of Immunology | 2011

Gαi2 and ZAP-70 Mediate RasGRP1 Membrane Localization and Activation of SDF-1–Induced T Cell Functions

Kimberly N. Kremer; Ashok Kumar; Karen E. Hedin

RasGRP1, a Ras guanine-nucleotide exchange factor, critically mediates T cell development and function and controls immunodeficiency and autoimmunity. In this study, we describe a unique mechanism of mobilization and activation of RasGRP1 in response to SDF-1, a chemokine that signals via the G protein-coupled receptor CXCR4. Depletion of RasGRP1 impaired SDF-1–stimulated human T cell migration, expression of the activation marker CD69, and activation of the ERK MAPK pathway, indicating that RasGRP1 mediates SDF-1 functions. SDF-1 treatment caused RasGRP1 to localize to the plasma membrane to activate K-Ras and to the Golgi to activate N-Ras. These events were required for cellular migration and for ERK activation that mediates downstream transcriptional events in response to SDF-1. SDF-1–dependent localization of RasGRP1 did not require its diacylglycerol-binding domain, even though diacyglycerol was previously shown to mediate localization of RasGRP1 in response to Ag stimulation. This domain was, however, required for activity of RasGRP1 after its localization. Intriguingly, SDF-1 treatment of T cells induced the formation of a novel molecular signaling complex containing RasGRP1, Gαi2, and ZAP-70. Moreover, SDF-1–mediated signaling by both Gi proteins and ZAP-70 was required for RasGRP1 mobilization. In addition, RasGRP1 mobilization and activation in response to SDF-1 was dependent on TCR expression, suggesting that CXCR4 heterodimerizes with the TCR to couple to ZAP-70 and mobilize RasGRP1. These results increase understanding of the molecular mechanisms that mediate SDF-1 effects on T cells and reveal a novel mechanism of RasGRP1 regulation. Other G protein-coupled receptors may similarly contribute to regulation of RasGRP1.


Journal of Biological Chemistry | 2015

Histone deacetylase inhibitors target the leukemic microenvironment by enhancing a Nherf1-protein phosphatase 1α-TAZ signaling pathway in osteoblasts

Kimberly N. Kremer; Amel Dudakovic; Allan D. Hess; B. Douglas Smith; Judith E. Karp; Scott H. Kaufmann; Jennifer J. Westendorf; Andre J. van Wijnen; Karen E. Hedin

Disrupting the protective signals provided by the bone marrow microenvironment will be critical for more effective combination drug therapies for acute myeloid leukemia (AML). Cells of the osteoblast lineage that reside in the endosteal niche have been implicated in promoting survival of AML cells. Here, we investigated how to prevent this protective interaction. We previously showed that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis of AML cells, unless the leukemic cells receive protective signals provided by differentiating osteoblasts (8, 10). We now identify a novel signaling pathway in differentiating osteoblasts that can be manipulated to disrupt the osteoblast-mediated protection of AML cells. Treating differentiating osteoblasts with histone deacetylase inhibitors (HDACi) abrogated their ability to protect co-cultured AML cells from SDF-1-induced apoptosis. HDACi prominently up-regulated expression of the Nherf1 scaffold protein, which played a major role in preventing osteoblast-mediated protection of AML cells. Protein phosphatase-1α (PP1α) was identified as a novel Nherf1 interacting protein that acts as the downstream mediator of this response by promoting nuclear localization of the TAZ transcriptional modulator. Moreover, independent activation of either PP1α or TAZ was sufficient to prevent osteoblast-mediated protection of AML cells even in the absence of HDACi. Together, these results indicate that HDACi target the AML microenvironment by enhancing activation of the Nherf1-PP1α-TAZ pathway in osteoblasts. Selective drug targeting of this osteoblast signaling pathway may improve treatments of AML by rendering leukemic cells in the bone marrow more susceptible to apoptosis.


Journal of Cell Biology | 2015

IQGAP1 promotes CXCR4 chemokine receptor function and trafficking via EEA-1+ endosomes

Adebowale O. Bamidele; Kimberly N. Kremer; Petra Hirsova; Ian C. Clift; Gregory J. Gores; Daniel D. Billadeau; Karen E. Hedin

IQGAP1 mediates CXCR4 cell surface expression and signaling by regulating EEA-1+ endosome interactions with microtubules during CXCR4 trafficking and recycling.

Collaboration


Dive into the Kimberly N. Kremer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andre J. Van Wijnen

University of Massachusetts Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge