Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kimberly R. Thompson is active.

Publication


Featured researches published by Kimberly R. Thompson.


Nature | 2011

Amygdala circuitry mediating reversible and bidirectional control of anxiety

Kay M. Tye; Rohit Prakash; Sung-Yon Kim; Lief E. Fenno; Logan Grosenick; Hosniya Zarabi; Kimberly R. Thompson; Viviana Gradinaru; Charu Ramakrishnan; Karl Deisseroth

Anxiety—a sustained state of heightened apprehension in the absence of immediate threat—becomes severely debilitating in disease states. Anxiety disorders represent the most common of psychiatric diseases (28% lifetime prevalence) and contribute to the aetiology of major depression and substance abuse. Although it has been proposed that the amygdala, a brain region important for emotional processing, has a role in anxiety, the neural mechanisms that control anxiety remain unclear. Here we explore the neural circuits underlying anxiety-related behaviours by using optogenetics with two-photon microscopy, anxiety assays in freely moving mice, and electrophysiology. With the capability of optogenetics to control not only cell types but also specific connections between cells, we observed that temporally precise optogenetic stimulation of basolateral amygdala (BLA) terminals in the central nucleus of the amygdala (CeA)—achieved by viral transduction of the BLA with a codon-optimized channelrhodopsin followed by restricted illumination in the downstream CeA—exerted an acute, reversible anxiolytic effect. Conversely, selective optogenetic inhibition of the same projection with a third-generation halorhodopsin (eNpHR3.0) increased anxiety-related behaviours. Importantly, these effects were not observed with direct optogenetic control of BLA somata, possibly owing to recruitment of antagonistic downstream structures. Together, these results implicate specific BLA–CeA projections as critical circuit elements for acute anxiety control in the mammalian brain, and demonstrate the importance of optogenetically targeting defined projections, beyond simply targeting cell types, in the study of circuit function relevant to neuropsychiatric disease.


Cell | 2010

Molecular and Cellular Approaches for Diversifying and Extending Optogenetics

Viviana Gradinaru; Feng Zhang; Charu Ramakrishnan; Joanna Mattis; Rohit Prakash; Ilka Diester; Inbal Goshen; Kimberly R. Thompson; Karl Deisseroth

Optogenetic technologies employ light to control biological processes within targeted cells in vivo with high temporal precision. Here, we show that application of molecular trafficking principles can expand the optogenetic repertoire along several long-sought dimensions. Subcellular and transcellular trafficking strategies now permit (1) optical regulation at the far-red/infrared border and extension of optogenetic control across the entire visible spectrum, (2) increased potency of optical inhibition without increased light power requirement (nanoampere-scale chloride-mediated photocurrents that maintain the light sensitivity and reversible, step-like kinetic stability of earlier tools), and (3) generalizable strategies for targeting cells based not only on genetic identity, but also on morphology and tissue topology, to allow versatile targeting when promoters are not known or in genetically intractable organisms. Together, these results illustrate use of cell-biological principles to enable expansion of the versatile fast optogenetic technologies suitable for intact-systems biology and behavior.


Nature | 2009

Temporally precise in vivo control of intracellular signalling

Raag D. Airan; Kimberly R. Thompson; Lief E. Fenno; Hannah Bernstein; Karl Deisseroth

In the study of complex mammalian behaviours, technological limitations have prevented spatiotemporally precise control over intracellular signalling processes. Here we report the development of a versatile family of genetically encoded optical tools (‘optoXRs’) that leverage common structure–function relationships among G-protein-coupled receptors (GPCRs) to recruit and control, with high spatiotemporal precision, receptor-initiated biochemical signalling pathways. In particular, we have developed and characterized two optoXRs that selectively recruit distinct, targeted signalling pathways in response to light. The two optoXRs exerted opposing effects on spike firing in nucleus accumbens in vivo, and precisely timed optoXR photostimulation in nucleus accumbens by itself sufficed to drive conditioned place preference in freely moving mice. The optoXR approach allows testing of hypotheses regarding the causal impact of biochemical signalling in behaving mammals, in a targetable and temporally precise manner.


Nature | 2012

Dopamine neurons modulate neural encoding and expression of depression-related behaviour

Kay M. Tye; Julie J. Mirzabekov; Melissa R. Warden; Emily A. Ferenczi; Hsing-Chen Tsai; Joel Finkelstein; Sung-Yon Kim; Avishek Adhikari; Kimberly R. Thompson; Aaron S. Andalman; Lisa A. Gunaydin; Ilana B. Witten; Karl Deisseroth

Major depression is characterized by diverse debilitating symptoms that include hopelessness and anhedonia. Dopamine neurons involved in reward and motivation are among many neural populations that have been hypothesized to be relevant, and certain antidepressant treatments, including medications and brain stimulation therapies, can influence the complex dopamine system. Until now it has not been possible to test this hypothesis directly, even in animal models, as existing therapeutic interventions are unable to specifically target dopamine neurons. Here we investigated directly the causal contributions of defined dopamine neurons to multidimensional depression-like phenotypes induced by chronic mild stress, by integrating behavioural, pharmacological, optogenetic and electrophysiological methods in freely moving rodents. We found that bidirectional control (inhibition or excitation) of specified midbrain dopamine neurons immediately and bidirectionally modulates (induces or relieves) multiple independent depression symptoms caused by chronic stress. By probing the circuit implementation of these effects, we observed that optogenetic recruitment of these dopamine neurons potently alters the neural encoding of depression-related behaviours in the downstream nucleus accumbens of freely moving rodents, suggesting that processes affecting depression symptoms may involve alterations in the neural encoding of action in limbic circuitry.


The Journal of Neuroscience | 2007

Targeting and Readout Strategies for Fast Optical Neural Control In Vitro and In Vivo

Viviana Gradinaru; Kimberly R. Thompson; Feng Zhang; Murtaza Mogri; Kenneth Kay; M. Bret Schneider; Karl Deisseroth

Major obstacles faced by neuroscientists in attempting to unravel the complexity of brain function include both the heterogeneity of brain tissue (with a multitude of cell types present in vivo) and the high speed of brain information processing (with behaviorally relevant millisecond-scale electrical activity patterns). To address different aspects of these technical constraints, genetically targetable neural modulation tools have been developed by a number of groups (Zemelman et al., 2002; Banghart et al., 2004; Karpova et al., 2005; Lima and Miesenbock, 2005; Thompson et al., 2005; Chambers et al., 2006; Tan et al., 2006; Gorostiza et al., 2007; Lerchner et al., 2007; Szobota et al., 2007). One approach recently brought to neurobiology, combining both high speed and genetic targeting, is based on a family of fast light-responsive microbial opsins including halorhodopsins (e.g., NpHR) and channelrhodopsins (e.g., ChR2) (for review, see Zhang et al., 2007b). These microbial opsins are single-component transmembrane conductance regulators encompassing light sensitivity and fast membrane potential control within a single open reading frame, which can be used to achieve fast bidirectional control of specific cell types even in freely moving animals (Adamantidis et al., 2007; Zhang et al., 2007a). Although the basic functioning of these tools has been reviewed previously (Zhang et al., 2007b), here we describe a collection of targeting and readout strategies designed for rapid and flexible application of the microbial opsin system, and provide pointers to the relevant literature. Combinations of these multiple levels of targeting and readout define an evolving toolbox that may open up new possibilities for basic neuroscience investigation.


Brain Cell Biology | 2008

eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications

Viviana Gradinaru; Kimberly R. Thompson; Karl Deisseroth

Temporally precise inhibition of distinct cell types in the intact nervous system has been enabled by the microbial halorhodopsin NpHR, a fast light-activated electrogenic Cl− pump. While neurons can be optically hyperpolarized and inhibited from firing action potentials at moderate NpHR expression levels, we have encountered challenges with pushing expression to extremely high levels, including apparent intracellular accumulations. We therefore sought to molecularly engineer NpHR to achieve strong expression without these cellular side effects. We found that high expression correlated with endoplasmic reticulum (ER) accumulation, and that under these conditions NpHR colocalized with ER proteins containing the KDEL ER retention sequence. We screened a number of different putative modulators of membrane trafficking and identified a combination of two motifs, an N-terminal signal peptide and a C-terminal ER export sequence, that markedly promoted membrane localization and ER export defined by confocal microscopy and whole-cell patch clamp. The modified NpHR displayed increased peak photocurrent in the absence of aggregations or toxicity, and potent optical inhibition was observed not only in vitro but also in vivo with thalamic single-unit recording. The new enhanced NpHR (eNpHR) allows safe, high-level expression in mammalian neurons, without toxicity and with augmented inhibitory function, in vitro and in vivo.


Nature | 2012

A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge

Melissa R. Warden; Aslihan Selimbeyoglu; Julie J. Mirzabekov; Maisie Lo; Kimberly R. Thompson; Sung-Yon Kim; Avishek Adhikari; Kay M. Tye; Loren M. Frank; Karl Deisseroth

The prefrontal cortex (PFC) is thought to participate in high-level control of the generation of behaviours (including the decision to execute actions); indeed, imaging and lesion studies in human beings have revealed that PFC dysfunction can lead to either impulsive states with increased tendency to initiate action, or to amotivational states characterized by symptoms such as reduced activity, hopelessness and depressed mood. Considering the opposite valence of these two phenotypes as well as the broad complexity of other tasks attributed to PFC, we sought to elucidate the PFC circuitry that favours effortful behavioural responses to challenging situations. Here we develop and use a quantitative method for the continuous assessment and control of active response to a behavioural challenge, synchronized with single-unit electrophysiology and optogenetics in freely moving rats. In recording from the medial PFC (mPFC), we observed that many neurons were not simply movement-related in their spike-firing patterns but instead were selectively modulated from moment to moment, according to the animal’s decision to act in a challenging situation. Surprisingly, we next found that direct activation of principal neurons in the mPFC had no detectable causal effect on this behaviour. We tested whether this behaviour could be causally mediated by only a subclass of mPFC cells defined by specific downstream wiring. Indeed, by leveraging optogenetic projection-targeting to control cells with specific efferent wiring patterns, we found that selective activation of those mPFC cells projecting to the brainstem dorsal raphe nucleus (DRN), a serotonergic nucleus implicated in major depressive disorder, induced a profound, rapid and reversible effect on selection of the active behavioural state. These results may be of importance in understanding the neural circuitry underlying normal and pathological patterns of action selection and motivation in behaviour.


Nature Medicine | 2010

Orderly recruitment of motor units under optical control in vivo

Michael E. Llewellyn; Kimberly R. Thompson; Karl Deisseroth; Scott L. Delp

A drawback of electrical stimulation for muscle control is that large, fatigable motor units are preferentially recruited before smaller motor units by the lowest-intensity electrical cuff stimulation. This phenomenon limits therapeutic applications because it is precisely the opposite of the normal physiological (orderly) recruitment pattern; therefore, a mechanism to achieve orderly recruitment has been a long-sought goal in physiology, medicine and engineering. Here we demonstrate a technology for reliable orderly recruitment in vivo. We find that under optical control with microbial opsins, recruitment of motor units proceeds in the physiological recruitment sequence, as indicated by multiple independent measures of motor unit recruitment including conduction latency, contraction and relaxation times, stimulation threshold and fatigue. As a result, we observed enhanced performance and reduced fatigue in vivo. These findings point to an unanticipated new modality of neural control with broad implications for nervous system and neuromuscular physiology, disease research and therapeutic innovation.


Scientific Reports | 2016

Optogenetic approaches addressing extracellular modulation of neural excitability

Emily A. Ferenczi; Johannes Vierock; Kyoko Atsuta-Tsunoda; Satoshi P. Tsunoda; Charu Ramakrishnan; Christopher Gorini; Kimberly R. Thompson; Soo Yeun Lee; Andre Berndt; Chelsey Perry; Sonja Minniberger; Arend Vogt; Joanna Mattis; Rohit Prakash; Scott L. Delp; Karl Deisseroth; Peter Hegemann

The extracellular ionic environment in neural tissue has the capacity to influence, and be influenced by, natural bouts of neural activity. We employed optogenetic approaches to control and investigate these interactions within and between cells, and across spatial scales. We began by developing a temporally precise means to study microdomain-scale interactions between extracellular protons and acid-sensing ion channels (ASICs). By coupling single-component proton-transporting optogenetic tools to ASICs to create two-component optogenetic constructs (TCOs), we found that acidification of the local extracellular membrane surface by a light-activated proton pump recruited a slow inward ASIC current, which required molecular proximity of the two components on the membrane. To elicit more global effects of activity modulation on ‘bystander’ neurons not under direct control, we used densely-expressed depolarizing (ChR2) or hyperpolarizing (eArch3.0, eNpHR3.0) tools to create a slow non-synaptic membrane current in bystander neurons, which matched the current direction seen in the directly modulated neurons. Extracellular protons played contributory role but were insufficient to explain the entire bystander effect, suggesting the recruitment of other mechanisms. Together, these findings present a new approach to the engineering of multicomponent optogenetic tools to manipulate ionic microdomains, and probe the complex neuronal-extracellular space interactions that regulate neural excitability.


Cell | 2016

Wiring and Molecular Features of Prefrontal Ensembles Representing Distinct Experiences

Li Ye; William E. Allen; Kimberly R. Thompson; Qiyuan Tian; Brian Hsueh; Charu Ramakrishnan; Ai-Chi Wang; Joshua H. Jennings; Avishek Adhikari; Casey H. Halpern; Ilana B. Witten; Alison L. Barth; Liqun Luo; Jennifer A. McNab; Karl Deisseroth

Collaboration


Dive into the Kimberly R. Thompson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Viviana Gradinaru

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sung-Yon Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Zhang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge