Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kimberly S. Butler is active.

Publication


Featured researches published by Kimberly S. Butler.


Journal of Controlled Release | 2016

Ligand-targeted theranostic nanomedicines against cancer.

Virginia J. Yao; Sara D'Angelo; Kimberly S. Butler; Christophe Theron; Tracey L. Smith; Serena Marchiò; Juri G. Gelovani; Richard L. Sidman; Andrey S. Dobroff; C. Jeffrey Brinker; Andrew Bradbury; Wadih Arap; Renata Pasqualini

Nanomedicines have significant potential for cancer treatment. Although the majority of nanomedicines currently tested in clinical trials utilize simple, biocompatible liposome-based nanocarriers, their widespread use is limited by non-specificity and low target site concentration and thus, do not provide a substantial clinical advantage over conventional, systemic chemotherapy. In the past 20years, we have identified specific receptors expressed on the surfaces of tumor endothelial and perivascular cells, tumor cells, the extracellular matrix and stromal cells using combinatorial peptide libraries displayed on bacteriophage. These studies corroborate the notion that unique receptor proteins such as IL-11Rα, GRP78, EphA5, among others, are differentially overexpressed in tumors and present opportunities to deliver tumor-specific therapeutic drugs. By using peptides that bind to tumor-specific cell-surface receptors, therapeutic agents such as apoptotic peptides, suicide genes, imaging dyes or chemotherapeutics can be precisely and systemically delivered to reduce tumor growth in vivo, without harming healthy cells. Given the clinical applicability of peptide-based therapeutics, targeted delivery of nanocarriers loaded with therapeutic cargos seems plausible. We propose a modular design of a functionalized protocell in which a tumor-targeting moiety, such as a peptide or recombinant human antibody single chain variable fragment (scFv), is conjugated to a lipid bilayer surrounding a silica-based nanocarrier core containing a protected therapeutic cargo. The functionalized protocell can be tailored to a specific cancer subtype and treatment regimen by exchanging the tumor-targeting moiety and/or therapeutic cargo or used in combination to create unique, theranostic agents. In this review, we summarize the identification of tumor-specific receptors through combinatorial phage display technology and the use of antibody display selection to identify recombinant human scFvs against these tumor-specific receptors. We compare the characteristics of different types of simple and complex nanocarriers, and discuss potential types of therapeutic cargos and conjugation strategies. The modular design of functionalized protocells may improve the efficacy and safety of nanomedicines for future cancer therapy.


Breast Cancer Research | 2011

Detection of breast cancer cells using targeted magnetic nanoparticles and ultra-sensitive magnetic field sensors

Helen J. Hathaway; Kimberly S. Butler; Natalie L. Adolphi; Debbie M. Lovato; Robert Belfon; Danielle L. Fegan; Todd C. Monson; Jason E. Trujillo; Trace E. Tessier; Howard C. Bryant; Dale L. Huber; Richard S. Larson; Edward R. Flynn

IntroductionBreast cancer detection using mammography has improved clinical outcomes for many women, because mammography can detect very small (5 mm) tumors early in the course of the disease. However, mammography fails to detect 10 - 25% of tumors, and the results do not distinguish benign and malignant tumors. Reducing the false positive rate, even by a modest 10%, while improving the sensitivity, will lead to improved screening, and is a desirable and attainable goal. The emerging application of magnetic relaxometry, in particular using superconducting quantum interference device (SQUID) sensors, is fast and potentially more specific than mammography because it is designed to detect tumor-targeted iron oxide magnetic nanoparticles. Furthermore, magnetic relaxometry is theoretically more specific than MRI detection, because only target-bound nanoparticles are detected. Our group is developing antibody-conjugated magnetic nanoparticles targeted to breast cancer cells that can be detected using magnetic relaxometry.MethodsTo accomplish this, we identified a series of breast cancer cell lines expressing varying levels of the plasma membrane-expressed human epidermal growth factor-like receptor 2 (Her2) by flow cytometry. Anti-Her2 antibody was then conjugated to superparamagnetic iron oxide nanoparticles using the carbodiimide method. Labeled nanoparticles were incubated with breast cancer cell lines and visualized by confocal microscopy, Prussian blue histochemistry, and magnetic relaxometry.ResultsWe demonstrated a time- and antigen concentration-dependent increase in the number of antibody-conjugated nanoparticles bound to cells. Next, anti Her2-conjugated nanoparticles injected into highly Her2-expressing tumor xenograft explants yielded a significantly higher SQUID relaxometry signal relative to unconjugated nanoparticles. Finally, labeled cells introduced into breast phantoms were measured by magnetic relaxometry, and as few as 1 million labeled cells were detected at a distance of 4.5 cm using our early prototype system.ConclusionsThese results suggest that the antibody-conjugated magnetic nanoparticles are promising reagents to apply to in vivo breast tumor cell detection, and that SQUID-detected magnetic relaxometry is a viable, rapid, and highly sensitive method for in vitro nanoparticle development and eventual in vivo tumor detection.


Contrast Media & Molecular Imaging | 2012

Imaging of Her2-targeted magnetic nanoparticles for breast cancer detection: comparison of SQUID-detected magnetic relaxometry and MRI.

Natalie L. Adolphi; Kimberly S. Butler; Debbie M. Lovato; Trace E. Tessier; Jason E. Trujillo; Helen J. Hathaway; Danielle L. Fegan; Todd C. Monson; Tyler E. Stevens; Dale L. Huber; Jaivijay Ramu; Michelle L. Milne; Stephen A. Altobelli; Howard C. Bryant; Richard S. Larson; Edward R. Flynn

Both magnetic relaxometry and magnetic resonance imaging (MRI) can be used to detect and locate targeted magnetic nanoparticles, noninvasively and without ionizing radiation. Magnetic relaxometry offers advantages in terms of its specificity (only nanoparticles are detected) and the linear dependence of the relaxometry signal on the number of nanoparticles present. In this study, detection of single-core iron oxide nanoparticles by superconducting quantum interference device (SQUID)-detected magnetic relaxometry and standard 4.7 T MRI are compared. The nanoparticles were conjugated to a Her2 monoclonal antibody and targeted to Her2-expressing MCF7/Her2-18 (breast cancer cells); binding of the nanoparticles to the cells was assessed by magnetic relaxometry and iron assay. The same nanoparticle-labeled cells, serially diluted, were used to assess the detection limits and MR relaxivities. The detection limit of magnetic relaxometry was 125 000 nanoparticle-labeled cells at 3 cm from the SQUID sensors. T(2)-weighted MRI yielded a detection limit of 15 600 cells in a 150 µl volume, with r(1) = 1.1 mm(-1) s(-1) and r(2) = 166 mm(-1) s(-1). Her2-targeted nanoparticles were directly injected into xenograft MCF7/Her2-18 tumors in nude mice, and magnetic relaxometry imaging and 4.7 T MRI were performed, enabling direct comparison of the two techniques. Co-registration of relaxometry images and MRI of mice resulted in good agreement. A method for obtaining accurate quantification of microgram quantities of iron in the tumors and liver by relaxometry was also demonstrated. These results demonstrate the potential of SQUID-detected magnetic relaxometry imaging for the specific detection of breast cancer and the monitoring of magnetic nanoparticle-based therapies.


International Journal of Cancer | 2011

Markers of fibrosis and epithelial to mesenchymal transition demonstrate field cancerization in histologically normal tissue adjacent to breast tumors.

Kristina A. Trujillo; Christopher M. Heaphy; Minh Mai; Keith M. Vargas; Anna C. Jones; Phung Vo; Kimberly S. Butler; Nancy E. Joste; Marco Bisoffi; Jeffrey Griffith

Previous studies have shown that a field of genetically altered but histologically normal tissue extends 1 cm or more from the margins of human breast tumors. The extent, composition and biological significance of this field are only partially understood, but the molecular alterations in affected cells could provide mechanisms for limitless replicative capacity, genomic instability and a microenvironment that supports tumor initiation and progression. We demonstrate by microarray, qRT‐PCR and immunohistochemistry a signature of differential gene expression that discriminates between patient‐matched, tumor‐adjacent histologically normal breast tissues located 1 cm and 5 cm from the margins of breast adenocarcinomas (TAHN‐1 and TAHN‐5, respectively). The signature includes genes involved in extracellular matrix remodeling, wound healing, fibrosis and epithelial to mesenchymal transition (EMT). Myofibroblasts, which are mediators of wound healing and fibrosis, and intra‐lobular fibroblasts expressing MMP2, SPARC, TGF‐β3, which are inducers of EMT, were both prevalent in TAHN‐1 tissues, sparse in TAHN‐5 tissues, and absent in normal tissues from reduction mammoplasty. Accordingly, EMT markers S100A4 and vimentin were elevated in both luminal and myoepithelial cells, and EMT markers α‐smooth muscle actin and SNAIL were elevated in luminal epithelial cells of TAHN‐1 tissues. These results identify cellular processes that are differentially activated between TAHN‐1 and TAHN‐5 breast tissues, implicate myofibroblasts as likely mediators of these processes, provide evidence that EMT is occurring in histologically normal tissues within the affected field and identify candidate biomarkers to investigate whether or how field cancerization contributes to the development of primary or recurrent breast tumors.


ACS Nano | 2016

Mesoporous Silica Nanoparticle-Supported Lipid Bilayers (Protocells) for Active Targeting and Delivery to Individual Leukemia Cells

Paul N. Durfee; Yu-Shen Lin; Darren R. Dunphy; Ayse Muniz; Kimberly S. Butler; Kevin R. Humphrey; Amanda J. Lokke; Jacob O. Agola; Stanley S. Chou; I-Ming Chen; Walker Wharton; Jason L. Townson; Cheryl L. Willman; C. Jeffrey Brinker

Many nanocarrier cancer therapeutics currently under development, as well as those used in the clinical setting, rely upon the enhanced permeability and retention (EPR) effect to passively accumulate in the tumor microenvironment and kill cancer cells. In leukemia, where leukemogenic stem cells and their progeny circulate within the peripheral blood or bone marrow, the EPR effect may not be operative. Thus, for leukemia therapeutics, it is essential to target and bind individual circulating cells. Here, we investigate mesoporous silica nanoparticle (MSN)-supported lipid bilayers (protocells), an emerging class of nanocarriers, and establish the synthesis conditions and lipid bilayer composition needed to achieve highly monodisperse protocells that remain stable in complex media as assessed in vitro by dynamic light scattering and cryo-electron microscopy and ex ovo by direct imaging within a chick chorioallantoic membrane (CAM) model. We show that for vesicle fusion conditions where the lipid surface area exceeds the external surface area of the MSN and the ionic strength exceeds 20 mM, we form monosized protocells (polydispersity index <0.1) on MSN cores with varying size, shape, and pore size, whose conformal zwitterionic supported lipid bilayer confers excellent stability as judged by circulation in the CAM and minimal opsonization in vivo in a mouse model. Having established protocell formulations that are stable colloids, we further modified them with anti-EGFR antibodies as targeting agents and reverified their monodispersity and stability. Then, using intravital imaging in the CAM, we directly observed in real time the progression of selective targeting of individual leukemia cells (using the established REH leukemia cell line transduced with EGFR) and delivery of a model cargo. Overall, we have established the effectiveness of the protocell platform for individual cell targeting and delivery needed for leukemia and other disseminated disease.


Physics in Medicine and Biology | 2010

Characterization of Single-core Magnetite Nanoparticles for Magnetic Imaging by SQUID-relaxometry

Natalie L. Adolphi; Dale L. Huber; Howard C. Bryant; Todd C. Monson; Danielle L. Fegan; JitKang Lim; Jason E. Trujillo; Trace E. Tessier; Debbie M. Lovato; Kimberly S. Butler; Paula Polyak Provencio; Helen J. Hathaway; Sara A. Majetich; Richard S. Larson; Edward R. Flynn

Optimizing the sensitivity of SQUID (superconducting quantum interference device) relaxometry for detecting cell-targeted magnetic nanoparticles for in vivo diagnostics requires nanoparticles with a narrow particle size distribution to ensure that the Néel relaxation times fall within the measurement timescale (50 ms-2 s, in this work). To determine the optimum particle size, single-core magnetite nanoparticles (with nominal average diameters 20, 25, 30 and 35 nm) were characterized by SQUID relaxometry, transmission electron microscopy, SQUID susceptometry, dynamic light scattering and zeta potential analysis. The SQUID relaxometry signal (detected magnetic moment/kg) from both the 25 nm and 30 nm particles was an improvement over previously studied multi-core particles. However, the detected moments were an order of magnitude lower than predicted based on a simple model that takes into account the measured size distributions (but neglects dipolar interactions and polydispersity of the anisotropy energy density), indicating that improved control of several different nanoparticle properties (size, shape and coating thickness) will be required to achieve the highest detection sensitivity. Antibody conjugation and cell incubation experiments show that single-core particles enable a higher detected moment per cell, but also demonstrate the need for improved surface treatments to mitigate aggregation and improve specificity.


Cancer Medicine | 2012

Coordinate regulation between expression levels of telomere-binding proteins and telomere length in breast carcinomas

Kimberly S. Butler; William C. Hines; Christopher M. Heaphy; Jeffrey Griffith

Telomere dysregulation occurs in both the in situ and invasive stages of many carcinomas, including breast. Knockout experiments have identified several telomere‐associated proteins required for proper telomere function and maintenance, including telomere repeat‐binding factor 1 and 2 (TRF1 and TRF2), protection of telomeres (POT1), and TRF1‐interacting nuclear factor 2 (TIN2). Using telomere content assays and quantitative reverse transcription‐polymerase chain reaction (RT‐PCR), we examined the relationship between telomere length and the mRNA levels of telomere‐associated proteins in breast tumors. The levels of TRF2, TRF1, TIN2, and POT1 mRNA, but not telomerase reverse transcriptase (TERT) RNA, are inversely correlated with telomere content in breast tumors. Significant associations were identified between the mRNA levels of TRF1, TIN2, and POT1; however, there were no significant associations with the mRNA levels of TRF2 or TERT. These associations suggest that a complex transcriptional program coordinately regulates the expression of these mRNAs. We examined the promoter regions of the telomere‐associated proteins to identify transcription factors consistent with the observed patterns of presumed coordinate expression. We demonstrated in human breast cancer cell lines that expressions of TRF1, TIN2, and POT1 are upregulated by dexamethasone, suggesting activation of the glucocorticoid receptor, whereas TERT, TRF2, TRF1, TIN2, and POT1 are upregulated by tumor necrosis factor‐α (TNF‐α), suggesting activation of the nuclear factor kappa B transcription factor. These findings link telomere content in breast tumors to the coordinate expression of several telomere‐associated proteins previously shown to be negative regulators of telomere length in cell lines. The results further suggest a possible link between the expressions of the telomere‐associated proteins and mediators of stress and inflammation.


Cell Transplantation | 2013

Development of Antibody-Tagged Nanoparticles for Detection of Transplant Rejection Using Biomagnetic Sensors:

Kimberly S. Butler; Debbie M. Lovato; Natalie L. Adolphi; Robert Belfon; Danielle L. Fegan; Todd C. Monson; Helen J. Hathaway; Dale L. Huber; Trace E. Tessier; Howard C. Bryant; Edward R. Flynn; Richard S. Larson

Organ transplantation is a life-saving procedure and the preferred method of treatment for a growing number of disease states. The advent of new immunosuppressants and improved care has led to great advances in both patient and graft survival. However, acute T-cell-mediated graft rejection occurs in a significant quantity of recipients and remains a life-threatening condition. Acute rejection is associated with decrease in long-term graft survival, demonstrating a need to carefully monitor transplant patients. Current diagnostic criteria for transplant rejection rely on invasive tissue biopsies or relatively nonspecific clinical features. A noninvasive way is needed to detect, localize, and monitor transplant rejection. Capitalizing on advances in targeted contrast agents and magnetic-based detection technology, we developed anti-CD3 antibody-tagged nanoparticles. T cells were found to bind preferentially to antibody-tagged nanoparticles, as identified through light microscopy, transmission electron microscopy, and confocal microscopy. Using mouse skin graft models, we were also able to demonstrate in vivo vascular delivery of T-cell targeted nanoparticles. We conclude that targeting lymphocytes with magnetic nanoparticles is conducive to developing a novel, noninvasive strategy for identifying transplant rejection.


Nature Communications | 2018

Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imaging-based pharmacokinetics

Prashant Dogra; Natalie L. Adolphi; Zhihui Wang; Yu-Shen Lin; Kimberly S. Butler; Paul N. Durfee; Jonas G. Croissant; Achraf Noureddine; Eric N. Coker; Elaine L. Bearer; Vittorio Cristini; C. Jeffrey Brinker

The progress of nanoparticle (NP)-based drug delivery has been hindered by an inability to establish structure-activity relationships in vivo. Here, using stable, monosized, radiolabeled, mesoporous silica nanoparticles (MSNs), we apply an integrated SPECT/CT imaging and mathematical modeling approach to understand the combined effects of MSN size, surface chemistry and routes of administration on biodistribution and clearance kinetics in healthy rats. We show that increased particle size from ~32- to ~142-nm results in a monotonic decrease in systemic bioavailability, irrespective of route of administration, with corresponding accumulation in liver and spleen. Cationic MSNs with surface exposed amines (PEI) have reduced circulation, compared to MSNs of identical size and charge but with shielded amines (QA), due to rapid sequestration into liver and spleen. However, QA show greater total excretion than PEI and their size-matched neutral counterparts (TMS). Overall, we provide important predictive functional correlations to support the rational design of nanomedicines.Nanoparticle applications are limited by insufficient understanding of physiochemical properties on in vivo disposition. Here, the authors explore the influence of size, surface chemistry and administration on the biodisposition of mesoporous silica nanoparticles using image-based pharmacokinetics.


Physics in Medicine and Biology | 2014

Modeling the efficiency of a magnetic needle for collecting magnetic cells

Kimberly S. Butler; Natalie L. Adolphi; Howard C. Bryant; Debbie M. Lovato; Richard S. Larson; Edward R. Flynn

As new magnetic nanoparticle-based technologies are developed and new target cells are identified, there is a critical need to understand the features important for magnetic isolation of specific cells in fluids, an increasingly important tool in disease research and diagnosis. To investigate magnetic cell collection, cell-sized spherical microparticles, coated with superparamagnetic nanoparticles, were suspended in (1) glycerine-water solutions, chosen to approximate the range of viscosities of bone marrow, and (2) water in which 3, 5, 10 and 100% of the total suspended microspheres are coated with magnetic nanoparticles, to model collection of rare magnetic nanoparticle-coated cells from a mixture of cells in a fluid. The magnetic microspheres were collected on a magnetic needle, and we demonstrate that the collection efficiency versus time can be modeled using a simple, heuristically-derived function, with three physically-significant parameters. The function enables experimentally-obtained collection efficiencies to be scaled to extract the effective drag of the suspending medium. The results of this analysis demonstrate that the effective drag scales linearly with fluid viscosity, as expected. Surprisingly, increasing the number of non-magnetic microspheres in the suspending fluid results increases the collection of magnetic microspheres, corresponding to a decrease in the effective drag of the medium.

Collaboration


Dive into the Kimberly S. Butler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dale L. Huber

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

C. Jeffrey Brinker

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Todd C. Monson

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge