Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kimie Niimi is active.

Publication


Featured researches published by Kimie Niimi.


The Journal of Neuroscience | 2012

Comparative Anatomy of Marmoset and Mouse Cortex from Genomic Expression

Hiromi Mashiko; Aya C. Yoshida; Satomi S. Kikuchi; Kimie Niimi; Eiki Takahashi; Jun Aruga; Hideyuki Okano; Tomomi Shimogori

Advances in mouse neural circuit genetics, brain atlases, and behavioral assays provide a powerful system for modeling the genetic basis of cognition and psychiatric disease. However, a critical limitation of this approach is how to achieve concordance of mouse neurobiology with the ultimate goal of understanding the human brain. Previously, the common marmoset has shown promise as a genetic model system toward the linking of mouse and human studies. However, the advent of marmoset transgenic approaches will require an understanding of developmental principles in marmoset compared to mouse. In this study, we used gene expression analysis in marmoset brain to pose a series of fundamental questions on cortical development and evolution for direct comparison to existing mouse brain atlas expression data. Most genes showed reliable conservation of expression between marmoset and mouse. However, certain markers had strikingly divergent expression patterns. The lateral geniculate nucleus and pulvinar in the thalamus showed diversification of genetic organization between marmoset and mouse, suggesting they share some similarity. In contrast, gene expression patterns in early visual cortical areas showed marmoset-specific expression. In prefrontal cortex, some markers labeled architectonic areas and layers distinct between mouse and marmoset. Core hippocampus was conserved, while afferent areas showed divergence. Together, these results indicate that existing cortical areas are genetically conserved between marmoset and mouse, while differences in areal parcellation, afferent diversification, and layer complexity are associated with specific genes. Collectively, we propose that gene expression patterns in marmoset brain reveal important clues to the principles underlying the molecular evolution of cortical and cognitive expansion.


European Journal of Pharmacology | 2008

Additive subthreshold dose effects of cannabinoid CB1 receptor antagonist and selective serotonin reuptake inhibitor in antidepressant behavioral tests

Eiki Takahashi; Mariko Katayama; Kimie Niimi; Chitoshi Itakura

The main clinically used antidepressant drugs are selective monoamine reuptake inhibitors, including selective serotonin reuptake inhibitors (citalopram, sertraline), selective dopamine reuptake inhibitor (nomifensine) and selective noradrenaline reuptake inhibitor (reboxetine), but they have various side effects. Because cannabinoid CB(1) receptor antagonists (SR141716A, AM251) enhance monoamine release, they might be beneficial in the therapy of affective disorders. We hypothesized that the use of monoamine reuptake inhibitors in combination with cannabinoid CB(1) receptor antagonists would allow a lower dose of monoamine reuptake inhibitors to be used in the therapy of depression, thereby reducing or eliminating the side effects. To test this hypothesis, we examined the combination of SR141716A or AM251 with citalopram, sertraline, nomifensine or reboxetine at subthreshold doses to see whether these combinations would show an additive effect in the forced swimming test and the tail suspension test with mice. Subthreshold doses of cannabinoid CB(1) receptor antagonist and selective serotonin reuptake inhibitors, which separately had no effect on the immobility of mice in the tests, showed a clear effect when the drugs were administered at 40 and 30 min, respectively, before the tests, without any change of motor activity. Therefore, the use of subthreshold doses of these agents in combination might be useful to enhance mainly serotonergic neurotransmission, and to reduce or eliminate the side effects of citalopram and sertraline.


Experimental Gerontology | 2008

Improved short-term memory and increased expression of NR2B observed in senescence-accelerated mouse (SAM) P6.

Kimie Niimi; Eiki Takahashi; Chitoshi Itakura

The increased dopamine and serotonin were suggested [Niimi et al., 2008. Emotional behavior and expression pattern of tyrosine hydroxylase and tryptophan hydroxylase in senescence-accelerated mouse (SAM) P6 mice. Behav. Brain Res. 188, 329-336], and as these monoamines are well known to influence working memory processes, SAMP6 may show improved working memory. We found that spatial Y-maze memory and non-spatial novel object recognition memory of SAMP6 were improved compared with those of senescence-accelerated mouse resistant 1 (SAMR1). Among molecules known to be related with memory processes other than dopamine and serotonin, we focused on N-methyl-D-aspartate (NMDA) receptors. Animals treated with (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), a NMDA receptor antagonist, were subjected to the Y-maze and novel object recognition tests to examine whether NMDA receptors are associated with the improved short-term memory of SAMP6. CPP (10 mg/kg) significantly impaired the spontaneous alternation behavior and the exploratory preference of SAMR1, whereas no significant effect was seen in SAMP6 in either of these behavioral tests. Western blot analyses revealed increased expression of NMDA receptor (NR) subunit 2B in forebrain of SAMP6 compared with SAMR1, while there was no difference in the levels of NR1 and NR2A between SAMR1 and SAMP6. Our results indicate that increased expression of NR2B in forebrain of SAMP6 is one of the causes of the improved short-term memory of SAMP6.


Biochemical and Biophysical Research Communications | 2011

Impairment of neuropsychological behaviors in ganglioside GM3-knockout mice.

Kimie Niimi; Chieko Nishioka; Tomomi Miyamoto; Eiki Takahashi; Ichiro Miyoshi; Chitoshi Itakura; Tadashi Yamashita

The ganglioside GM3 synthase (SAT-I), encoded by a single-copy gene, is a primary glycosyltransferase for the synthesis of complex gangliosides. Although its expression is tightly controlled during early embryo development and postnatal development and maturation in the brain, the physiological role of ganglioside GM3 in the regulation of neuronal functions has not been elucidated. In the present study, we examined motor activity, cognitive and emotional behaviors, and drug administration in juvenile GM3-knockout (GM3-KO) mice. GM3-KO male and female mice showed hyperactivity in the motor activity test, Y-maze test, and elevated plus maze test. In the Y-maze test, there was significantly less spontaneous alternation behavior in GM3-KO male mice than in wild-type mice. In the elevated plus maze test, the amount of time spent on the open arms by GM3-KO male mice was significantly higher than that of sex-matched wild-type mice. In contrast, there was no significant difference between GM3-KO and wild-type female mice in these tests. Thus, juvenile GM3-KO mice show gender-specific phenotypes resembling attention-deficit hyperactivity disorder (ADHD), namely hyperactivity, reduced attention, and increased impulsive behaviors. However, administration of methylphenidate hydrochloride (MPH) did not ameliorate hyperactivity in either male or female GM3-KO mice. Although these data demonstrate the involvement of ganglioside GM3 in ADHD and the ineffectiveness of MPH, the first-choice psychostimulant for ADHD medication, our studies indicate that juvenile GM3-KO mice are a useful tool for neuropsychological studies.


Brain Research | 2009

Motor coordination impairment in aged heterozygous rolling Nagoya, Cav2.1 mutant mice

Eiki Takahashi; Kimie Niimi; Chitoshi Itakura

Although rolling Nagoya mice exhibit ataxia and carry a mutation in the alpha1 subunit of the Cav2.1 channel regulating neurotransmitter release, heterozygous mice have not received a great deal of attention. Given the pivotal role of Cav2.1 channels in controlling neurotransmitter release, age-dependent alterations in Cav2.1 channel function may result in aberrant synaptic signaling, leading to motor dysfunction. To examine age-related motor alterations in heterozygous mice, we used a battery of tests (e.g., motor activity, footprint, traction, wire suspension, balance beam, rotating rod, hind-limb extension analysis) in 2- and 22-month-old mice and examined expression patterns of the alpha1 gene in their cerebellum. No significant difference was observed between 2-month-old heterozygous and wild-type mice in the any of the behavioral tests or in the alpha1 expression levels. Although 22-month-old heterozygous and wild-type mice exhibited no significant difference in motor activity, footprint, or traction tests, 22-month-old heterozygous mice showed deficits in the wire hanging, balance beam, and rotating rod tests. Additionally, 22-month-old heterozygous mice displayed clasping behavior in the hind-limb extension test. Expression analysis showed that wild-type Cav2.1alpha(1) mRNA was lower in aged mice than in young mice and that mutant-type Cav2.1alpha(1) mRNA was higher in aged mice than in young mice. These findings suggest that heterozygous mice show age-related motor changes due to mutant-type Cav2.1 and that heterozygous mice may represent a new model for examining motor function.


Neuroscience | 2009

Hypoalgesic behaviors of P/Q-type voltage-gated Ca2+ channel mutant mouse, rolling mouse Nagoya

N. Fukumoto; Y. Obama; Naoki Kitamura; Kimie Niimi; Eiki Takahashi; Chitoshi Itakura; Izumi Shibuya

Rolling mouse Nagoya (tg(rol)) is a spontaneously occurring P/Q-type voltage-gated Ca2+ channel (VGCC) mutant mouse. A P/Q-type VGCC with the tg(rol) mutation has lower voltage sensitivity of activation, and mice with a homozygous genotype (tg(rol)/tg(rol)) but not with a heterozygous genotype (tg(rol)/+) show impaired motor coordination of the hind limbs. To investigate the roles of P/Q-type VGCC in pain sensing mechanisms, behavioral responses of adult tg(rol) mice to thermal, mechanical and chemical nociceptive stimuli were examined by the plantar, tail-flick, von Frey and formalin tests. The latency of the withdrawal response to thermal stimuli in the plantar or tail-flick tests was significantly longer in tg(rol)/tg(rol) mice than in tg(rol)/+ and wild-type (+/+) mice, and in tg(rol)/+ mice than in +/+ mice. The withdrawal response to mechanical stimuli in the von Frey test was lower in tg(rol)/tg(rol) mice than in +/+ mice. Although the licking time during the first 5 min after the formalin injection was similar among all of the three genotypes, that during 5-60 min was significantly shorter in tg(rol)/tg(rol) mice than in tg(rol)/+ and +/+ mice, and in tg(rol)/+ mice than in +/+ mice. Artificial inflammation induced by injection of complete Freunds adjuvant (CFA) into a hind paw significantly enhanced the withdrawal response recorded in the plantar and von Frey tests regardless of the mouse genotype. The CFA-enhanced response in the tg(rol)/tg(rol) mice was similar to the response in +/+ mice without the CFA injection. These results suggest that tg(rol) mutant mice show hypoalgesic responses caused by a lower sensitivity to nociceptive thermal, mechanical and chemical stimuli. It is concluded that the P/Q-type VGCC has a pro-nociceptive role and that the tg(rol) mutant mouse may be a useful tool to investigate the role of the P/Q-type VGCC in pain sensing mechanisms.


Experimental Gerontology | 2009

Spatial learning deficit in aged heterozygous Cav2.1 channel mutant mice, rolling mouse Nagoya.

Eiki Takahashi; Kimie Niimi

Rolling Nagoya mice carrying Ca(v)2.1alpha1 gene mutation show ataxia, whereas heterozygous mice show no apparently abnormal behavior. It has been reported that Ca(v)2.1 regulates neurotransmitter release and that Ca(2+) influx through Ca(v)2.1 decreases with aging. Age-related decline in cognitive function could be at least partly attributable to decreases in Ca(v)2.1-related neurotransmission. In this study to examine age-related cognitive alterations in heterozygous mice, we used Y-maze and delayed spatial win-shift eight-arm radial-maze tests, and 2- and 22-month-old mice. Although there was no difference between 2-month-old heterozygous and wild-type mice, 22-month-old heterozygous mice showed decreased memory formation versus 2-month-old heterozygous mice in both tests. Expression analysis in forebrain showed that total Ca(v)2.1alpha1 mRNA, including wild-type and mutant-type Ca(v)2.1alpha1 mRNA, in 2-month-old heterozygous mice was expressed at a level similar to that in 22-month-old heterozygous mice. However, wild-type Ca(v)2.1alpha1 mRNA was expressed at a lower level in 22-month-old mice than in 2-month-old mice, and mutant-type Ca(v)2.1alpha1 mRNA was expressed at a higher level in 22-month-old versus 2-month-old mice. Our results suggest that aged heterozygous mice show deficits in spatial learning due to Ca(v)2.1 channel dysfunction and that heterozygous mice may be a useful model for examining mechanisms underlying age-related cognitive dysfunction.


Behavioural Brain Research | 2010

Impairment of spatial short-term memory following acute administration of the NMDA receptor antagonist in heterozygous rolling Nagoya mice carrying the CaV2.1α1 mutation

Eiki Takahashi; Kimie Niimi; Chitoshi Itakura

Heterozygous rolling Nagoya (rol/+) mice carrying Ca(V)2.1 alpha(1) mutation demonstrated normal behavior in Y maze test. Similar spontaneous alternation patterns were noted in wild-type and rol/+ mice injected with N-methyl-D-aspartate (NMDA; 0-50mg/kg, sc). Systemic injection of NMDA receptor blocker (MK-801; 0.05 mg/kg, ip) or intrahippocampal injection of MK-801 (0.5 microg/side), which had no effect in wild-type controls, decreased spatial cognition in rol/+ mice. These results indicate that Ca(V)2.1 alpha(1) mutation probably through decrease in Ca(2+) influx lowers the threshold for learning impairment. The combination subthreshold pharmacological and genetic approach is useful to study functional pathways in neuronal circuits.


Physiology & Behavior | 2009

Analysis of motor function and dopamine systems of SAMP6 mouse.

Kimie Niimi; Eiki Takahashi; Chitoshi Itakura

The motor function of senescence-accelerated mouse prone 6 (SAMP6) was evaluated with a battery of behavioral tests: locomotor activity test, traction test, wire hanging test, and rotating rod test. SAMP6 exhibited increased locomotor activity compared with senescence-accelerated mouse resistant 1 (SAMR1). There was no difference between SAMP6 and SAMR1 in the traction and wire hanging tests. In the rotating rod test, shorter retention times at each day in the accelerating version of the test were observed in SAMP6 compared with SAMR1, indicating a motor coordination deficit of SAMP6. To understand the mechanism involved, we focused on the dopamine system. Measurement of dopamine and its metabolites with HPLC revealed that the concentrations of dopamine in nucleus accumbens (NAcs) and cerebellum and of one or more dopamine metabolites in all tissues assayed were significantly higher in SAMP6 compared with SAMR1. Increases of dopamine transporter and dopamine receptor 1 (D1) in striatum, of dopamine receptor 3 (D3) in NAc, and of D1 and D3 in cerebellum in SAMP6 were observed. These results indicate that increased dopamine concentration in NAc and increased expression of D1 in striatum are possible cause(s) of the increased locomotor activity of SAMP6, and that increased D3 expression in cerebellum contributes to the motor coordination deficit of SAMP6.


Behavioral Neuroscience | 2009

Enhanced CaMKII activity and spatial cognitive function in SAMP6 mice.

Eiki Takahashi; Kimie Niimi; Chitoshi Itakura

Senescence-accelerated mouse prone 6 (SAMP6) mice exhibit increased expression of NMDA receptor NR2B subunit (NR2B) and improved short-term memory compared with senescence-accelerated mouse resistance 1 (SAMR1) mice. The Thr286 phosphorylation of alpha calcium/calmodulin-dependent protein kinase II (CaMKII) has a crucial role in plasticity and learning among multiple downstream signaling pathways linked to the NMDA receptor. To examine the relationship between CaMKII activity and spatial learning in SAMP6, the authors employed western blot analysis and behavioral analyses (object location and delayed spatial win-shift eight-arm radial-maze tests). The levels of Thr286 and Ser831 phosphorylation of CaMKII and AMPA receptor subunit glutamate receptor 1 (CaMKII substrate), respectively, were increased in hippocampus of SAMP6 compared with SAMR1. SAMP6 showed faster hippocampal-dependent spatial memory formation than SAMR1 in both the object location and win-shift eight-arm radial-maze tests. Our results indicate that increased CaMKII activity influences the NR2B/CaMKII signal pathway and cognitive function in SAMP6.

Collaboration


Dive into the Kimie Niimi's collaboration.

Top Co-Authors

Avatar

Eiki Takahashi

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Chitoshi Itakura

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Tae Yeon Kim

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Takuro Yoshimoto

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Yo Aoyama

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Ying Zhou

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shigeyoshi Itohara

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Toshiaki Nakashiba

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge