Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kimiko Kuroki is active.

Publication


Featured researches published by Kimiko Kuroki.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Structural basis for recognition of the nonclassical MHC molecule HLA-G by the leukocyte Ig-like receptor B2 (LILRB2/LIR2/ILT4/CD85d)

Mitsunori Shiroishi; Kimiko Kuroki; Linda Rasubala; Kouhei Tsumoto; Izumi Kumagai; Eiji Kurimoto; Koichi Kato; Daisuke Kohda; Katsumi Maenaka

HLA-G is a nonclassical MHC class I (MHCI) molecule that can suppress a wide range of immune responses in the maternal–fetal interface. The human inhibitory immune receptors leukocyte Ig-like receptor (LILR) B1 [also called LIR1, Ig-like transcript 2 (ILT2), or CD85j] and LILRB2 (LIR2/ILT4/CD85d) preferentially recognize HLA-G. HLA-G inherently exhibits various forms, including β2-microglobulin (β2m)-free and disulfide-linked dimer forms. Notably, LILRB1 cannot recognize the β2m-free form of HLA-G or HLA-B27, but LILRB2 can recognize the β2m-free form of HLA-B27. To date, the structural basis for HLA-G/LILR recognition remains to be examined. Here, we report the 2.5-Å resolution crystal structure of the LILRB2/HLA-G complex. LILRB2 exhibits an overlapping but distinct MHCI recognition mode compared with LILRB1 and dominantly recognizes the hydrophobic site of the HLA-G α3 domain. NMR binding studies also confirmed these LILR recognition differences on both conformed (heavy chain/peptide/β2m) and free forms of β2m. Binding studies using β2m-free MHCIs revealed differential β2m-dependent LILR-binding specificities. These results suggest that subtle structural differences between LILRB family members cause the distinct binding specificities to various forms of HLA-G and other MHCIs, which may in turn regulate immune suppression.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Crystal structure of measles virus hemagglutinin provides insight into effective vaccines

Takao Hashiguchi; Mizuho Kajikawa; Nobuo Maita; Makoto Takeda; Kimiko Kuroki; Kaori Sasaki; Daisuke Kohda; Yusuke Yanagi; Katsumi Maenaka

Measles still remains a major cause of childhood morbidity and mortality worldwide. Measles virus (MV) vaccines are highly successful, but the mechanism underlying their efficacy has been unclear. Here we report the crystal structure of the MV attachment protein, hemagglutinin, responsible for MV entry. The receptor-binding head domain exhibits a cubic-shaped β-propeller structure and forms a homodimer. N-linked sugars appear to mask the broad regions and cause the two molecules forming the dimer to tilt oppositely toward the horizontal plane. Accordingly, residues of the putative receptor-binding site, highly conserved among MV strains, are strategically positioned in the unshielded area of the protein. These conserved residues also serve as epitopes for neutralizing antibodies, ensuring the serological monotype, a basis for effective MV vaccines. Our findings suggest that sugar moieties in the MV hemagglutinin critically modulate virus–receptor interaction as well as antiviral antibody responses, differently from sugars of the HIV gp120, which allow for immune evasion.


Journal of Biological Chemistry | 2006

Efficient Leukocyte Ig-like Receptor Signaling and Crystal Structure of Disulfide-linked HLA-G Dimer

Mitsunori Shiroishi; Kimiko Kuroki; Toyoyuki Ose; Linda Rasubala; Ikuo Shiratori; Hisashi Arase; Kouhei Tsumoto; Izumi Kumagai; Daisuke Kohda; Katsumi Maenaka

HLA-G is a nonclassical major histocompatibility complex class I (MHCI) molecule, which is expressed in trophoblasts and confers immunological tolerance in the maternal-fetal interface by binding to leukocyte Ig-like receptors (LILRs, also called as LIR/ILT/CD85) and CD8. HLA-G is expressed in disulfide-linked dimer form both in solution and at the cell surface. Interestingly, MHCI dimer formations have been involved in pathogenesis and T cell activation. The structure and receptor binding characteristics of MHCI dimers have never been evaluated. Here we performed binding studies showing that the HLA-G dimer exhibited higher overall affinity to LILRB1/2 than the monomer by significant avidity effects. Furthermore, the cell reporter assay demonstrated that the dimer formation remarkably enhanced the LILRB1-mediated signaling at the cellular level. We further determined the crystal structure of the wild-type dimer of HLA-G with the intermolecular Cys42-Cys42 disulfide bond. This dimer structure showed the oblique configuration to expose two LILR/CD8-binding sites upward from the membrane easily accessible for receptors, providing plausible 1:2 (HLA-G dimer:receptors) complex models. These results indicated that the HLA-G dimer conferred increased avidity in a proper structural orientation to induce efficient LILR signaling, resulting in the dominant immunosuppressive effects. Moreover, structural and functional implications for other MHCI dimers observed in activated T cells and the pathogenic allele, HLA-B27, are discussed.


Arthritis & Rheumatism | 2012

Inhibiting HLA–B27 homodimer–driven immune cell inflammation in spondylarthritis

Sravan Payeli; Simon Kollnberger; Osiris Marroquin Belaunzaran; Markus Thiel; Kirsty McHugh; Joanna Giles; J Shaw; Sascha Kleber; A Ridley; Isabel Wong-Baeza; Sarah Keidel; Kimiko Kuroki; Katsumi Maenaka; Andreas Wadle; Christoph Renner; P Bowness

OBJECTIVE Spondylarthritides (SpA), including ankylosing spondylitis (AS), are common inflammatory rheumatic diseases that are strongly associated with positivity for the HLA class I allotype B27. HLA-B27 normally forms complexes with β(2) -microglobulin (β(2) m) and peptide to form heterotrimers. However, an unusual characteristic of HLA-B27 is its ability to form β(2) m-free heavy chain homodimers (HLA-B27(2) ), which, unlike classic HLA-B27, bind to killer cell immunoglobulin-like receptor 3DL2 (KIR-3DL2). Binding of HLA-B27(2) to KIR-3DL2-positive CD4+ T and natural killer (NK) cells stimulates cell survival and modulates cytokine production. This study was undertaken to produce an antibody to HLA-B27(2) in order to confirm its expression in SpA and to inhibit its proinflammatory properties. METHODS We generated monoclonal antibodies by screening a human phage display library positively against B27(2) and negatively against B27 heterotrimers. Specificity was tested by enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR) assay, and fluorescence-activated cell sorting (FACS) analysis of B27(2) -expressing cell lines and peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) from patients with SpA. Functional inhibition of KIR-3DL2-B27(2) interactions was tested using cell lines and PBMCs from patients with SpA. RESULTS Monoclonal antibody HD6 specifically recognized recombinant HLA-B27(2) by ELISA and by SPR assay. HD6 bound to cell lines expressing B27(2) . FACS revealed binding of HD6 to PBMCs and SFMCs from patients with AS but not from controls. HD6 inhibited both the binding of HLA-B27(2) to KIR-3DL2 and the survival and proliferation of KIR-3DL2-positive NK cells. Finally, HD6 inhibited production of the proinflammatory disease-associated cytokine interleukin-17 by PBMCs from patients with AS. CONCLUSION These results demonstrate that antibody HD6 has potential for use in both the investigation and the treatment of AS and other B27-associated spondylarthritides.


Frontiers in Microbiology | 2012

Molecular Recognition of Paired Receptors in the Immune System

Kimiko Kuroki; Atsushi Furukawa; Katsumi Maenaka

Cell surface receptors are responsible for regulating cellular function on the front line, the cell membrane. Interestingly, accumulating evidence clearly reveals that the members of cell surface receptor families have very similar extracellular ligand-binding regions but opposite signaling systems, either inhibitory or stimulatory. These receptors are designated as paired receptors. Paired receptors often recognize not only physiological ligands but also non-self ligands, such as viral and bacterial products, to fight infections. In this review, we introduce several representative examples of paired receptors, focusing on two major structural superfamilies, the immunoglobulin-like and the C-type lectin-like receptors, and explain how these receptors distinguish self and non-self ligands to maintain homeostasis in the immune system. We further discuss the evolutionary aspects of these receptors as well as the potential drug targets for regulating diseases.


Journal of Biological Chemistry | 2006

Crystal structure of the human monocyte-activating receptor, Group 2 leukocyte ig-like receptor A5 (LILRA5/LIR9/ILT11)

Mitsunori Shiroishi; Mizuho Kajikawa; Kimiko Kuroki; Toyoyuki Ose; Daisuke Kohda; Katsumi Maenaka

Human leukocyte Ig-like receptor B1 (LILRB1) and B2 (LILRB2) belong to “Group 1” receptors and recognize a broad range of major histocompatibility complex class I molecules (MHCIs). In contrast, “Group 2” receptors show low similarity with LILRB1/B2, and their ligands remain to be identified. To date, the structural and functional characteristics of Group 2 LILRs are poorly understood. Here we report the crystal structure of the extracellular domain of LILRA5, which is an activating Group 2 LILR expressed on monocytes and neutrophils. Unexpectedly, the structure showed large changes in structural conformation and charge distribution in the region corresponding to the MHCI binding site of LILRB1/B2, which are also distinct from killer cell Ig-like receptors and Fcα receptors. These changes probably confer the structural hindrance for the MHCI binding, and their key amino acid substitutions are well conserved in Group 2 LILRs. Consistently, the surface plasmon resonance and flow cytometric analyses demonstrated that LILRA5 exhibited no affinities to all tested MHCIs. These results raised the possibility that LILRA5 as well as Group 2 LILRs do not play a role in any MHCI recognition but could possibly bind to non-MHCI ligand(s) on the target cells to provide a novel immune regulation mechanism.


Genes and Immunity | 2002

Polymorphisms of human CD19 gene: possible association with susceptibility to systemic lupus erythematosus in Japanese.

Kimiko Kuroki; Naoyuki Tsuchiya; Betty P. Tsao; Jm Grossman; Toru Fukazawa; Kiyofumi Hagiwara; H Kano; Takazoe M; T Iwata; Hiroshi Hashimoto; Katsushi Tokunaga

CD19 regulates the signaling for B lymphocyte development, activation and proliferation. In mice, CD19 deficiency and overexpression were shown to result in hypogammaglobulinemia and autoantibody production, respectively. In the present study, we screened for the polymorphisms of CD19 , and examined the detected polymorphisms for the association with rheumatoid arthritis (RA), Crohn’s disease and systemic lupus erythematosus (SLE). Two SNPs, c.705G>T (P235P and IVS14-30C>T, were decreased (P = 0.0096 and P = 0.028, respectively), in SLE. A GT repeat polymorphism, c.*132(GT)12–18, was detected within the 3’-untranslated region, and individuals with ⩾15 times repeat was significantly increased in the independent two groups of Japanese SLE patients (P = 0.011 and P = 0.035, respectively); the overall difference between total SLE and controls was striking (P = 0.0061). No association was observed for RA and Crohn’s disease. In addition, no variations other than the common polymorphisms were detected in four patients with common variable immunodeficiency, the phenotype of which resembles CD19 deficient mice. In Caucasian SLE families, this GT repeat polymorphism was rare. CD19 mRNA level in the isolated peripheral blood B lymphocytes was lower in individuals possessing (GT)15–18 alleles compared with those without these alleles, both in controls and in SLE patients; however, the difference did not reach statistical significance. These results suggested that either the slight reduction in the CD19 mRNA level associated with the elongation of GT repeat, or an allele of another locus in linkage disquilibrium with CD19 (GT)15–18, may be associated with susceptibility to SLE in Japanese.


Journal of Biological Chemistry | 2011

Molecular Basis for LLT1 Protein Recognition by Human CD161 Protein (NKRP1A/KLRB1)

Jun Kamishikiryo; Hideo Fukuhara; Yuki Okabe; Kimiko Kuroki; Katsumi Maenaka

Human Th17 cells express high levels of CD161, a member of the killer cell lectin-like receptor (KLR) family (also referred to as NK receptor-P1A (NKRP1A) or KLRB1), as a representative marker. CD161 is also expressed on natural killer (NK) cells and NKT cells. Lectin-like transcript 1 (LLT1), another KLR family member, was recently identified as a ligand for CD161. This interaction may play pivotal roles in the immunomodulatory functions of Th17 cells as well as those of NK and NKT cells. However, the molecular basis for the interaction is poorly understood. Here we show that the extracellular domain of CD161 bound directly to LLT1 with a Kd of 48 μm and with the fast kinetics typical of cell-cell recognition receptors. Mutagenesis revealed that the similar membrane-distal β-sheet and loop regions of both CD161 and LLT1 were utilized for the binding, and notably, these regions correspond to the ligand-binding sites for major histocompatibility complex (MHC)-recognizing KLRs. Furthermore, we found a pair of detrimental mutations for both molecules that restored the binding. These results reveal a new template model for the recognition mode between the KLR family members and provide insights into the molecular mechanism underlying Th17/NK/NKT-mediated immune responses.


Journal of Immunology | 2012

HLA-B27 homodimers and free H chains are stronger ligands for leukocyte Ig-like receptor B2 than classical HLA class I.

Joanna Giles; Jackie Shaw; Christopher Piper; Isabel Wong-Baeza; Kirsty McHugh; A Ridley; Demin Li; Izabela Lenart; Antony N. Antoniou; Katilin DiGleria; Kimiko Kuroki; Katsumi Maenaka; Paul Bowness; Simon Kollnberger

Possession of HLA-B27 (B27) strongly predisposes to the development of spondyloarthritis. B27 forms classical heterotrimeric complexes with β2-microglobulin (β2m) and peptide and (β2m free) free H chain (FHC) forms including B27 dimers (termed B272) at the cell surface. In this study, we characterize the interaction of HLA-B27 with LILR, leukocyte Ig-like receptor (LILR)B1 and LILRB2 immune receptors biophysically, biochemically, and by FACS staining. LILRB1 bound to B27 heterotrimers with a KD of 5.3 ± 1.5 μM but did not bind B27 FHC. LILRB2 bound to B272 and B27 FHC and B27 heterotrimers with KDs of 2.5, 2.6, and 22 ± 6 μM, respectively. Domain exchange experiments showed that B272 bound to the two membrane distal Ig-like domains of LILRB2. In FACS staining experiments, B27 dimer protein and tetramers stained LILRB2 transfectants five times more strongly than B27 heterotrimers. Moreover, LILRB2Fc bound to dimeric and other B27 FHC forms on B27-expressing cell lines more strongly than other HLA-class 1 FHCs. B27-transfected cells expressing B27 dimers and FHC inhibited IL-2 production by LILRB2-expressing reporter cells to a greater extent than control HLA class I transfectants. B27 heterotrimers complexed with the L6M variant of the GAG KK10 epitope bound with a similar affinity to complexes with the wild-type KK10 epitope (with KDs of 15.0 ± 0.8 and 16.0 ± 2.0 μM, respectively). Disulfide-dependent B27 H chain dimers and multimers are stronger ligands for LILRB2 than HLA class I heterotrimers and H chains. The stronger interaction of B27 dimers and FHC forms with LILRB2 compared with other HLA class I could play a role in spondyloarthritis pathogenesis.


AIDS | 2009

Reciprocal recognition of an HLA-Cw4-restricted HIV-1 gp120 epitope by CD8+ T cells and NK cells.

Hathairat Thananchai; Tariro Makadzange; Katsumi Maenaka; Kimiko Kuroki; Yanchun Peng; Christopher Conlon; Sarah Rowland-Jones; Tao Dong

Objectives:The HIV-1 Nef protein selectively downregulates human leukocyte antigen (HLA)-A and HLA-B but not HLA-C molecules on the surface of infected cells. This allows HIV-infected cells to evade recognition by most cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. We investigated the recognition of an HLA-Cw4-restricted HIV-1 gp120 epitope SFNCGGEFF (SF9) and its variant SFNCGGEFL (SL9) by T cells and NK receptors. Design and method:Recognition of HIV-1 gp120 peptides (SF9 and SL9) by T-cell clones was measured by staining with HLA-Cw4-peptide tetrameric complexes and cytolytic assays using target cell pulsed with either peptides. KIR2DL1 binding to these two peptides was measured using surface plasmon resonance and tetramer staining of an NK cell line. Result:CTLs could recognize SF9 better than the variant SL9, as shown by both tetramer staining and cytolytic assays. Intriguingly, an HLA-Cw4 tetramer folded with the ‘escape’ variant SL9 could bind to KIR2DL1 on NK cell lines with higher affinity than HLA-Cw4-SF9. The binding of KIR2DL1 to its ligand results in inhibition of NK cell function. Our results indicate that the HIV-1 gp120 variant peptide SL9 could potentially escape both from NK cell and CTL recognition by increasing its affinity for KIR2DL1 binding. Conclusion:These data suggest that HIV-1 can acquire mutations that are capable of escaping from both CTL and NK cell recognition, a phenomenon we have termed ‘double escape’.

Collaboration


Dive into the Kimiko Kuroki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge