Mitsunori Shiroishi
Kyushu University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mitsunori Shiroishi.
Nature | 2012
Kazuko Haga; Andrew C. Kruse; Hidetsugu Asada; Takami Yurugi-Kobayashi; Mitsunori Shiroishi; Cheng Zhang; William I. Weis; Tetsuji Okada; Brian K. Kobilka; Tatsuya Haga; Takuya Kobayashi
The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.
Nature | 2011
Tatsuro Shimamura; Mitsunori Shiroishi; Simone Weyand; Hirokazu Tsujimoto; Graeme Winter; Vsevolod Katritch; Ruben Abagyan; Vadim Cherezov; Wei Liu; Gye Won Han; Takuya Kobayashi; Raymond C. Stevens; So Iwata
The biogenic amine histamine is an important pharmacological mediator involved in pathophysiological processes such as allergies and inflammations. Histamine H1 receptor (H1R) antagonists are very effective drugs alleviating the symptoms of allergic reactions. Here we show the crystal structure of the H1R complex with doxepin, a first-generation H1R antagonist. Doxepin sits deep in the ligand-binding pocket and directly interacts with Trp 4286.48, a highly conserved key residue in G-protein-coupled-receptor activation. This well-conserved pocket with mostly hydrophobic nature contributes to the low selectivity of the first-generation compounds. The pocket is associated with an anion-binding region occupied by a phosphate ion. Docking of various second-generation H1R antagonists reveals that the unique carboxyl group present in this class of compounds interacts with Lys 1915.39 and/or Lys 179ECL2, both of which form part of the anion-binding region. This region is not conserved in other aminergic receptors, demonstrating how minor differences in receptors lead to pronounced selectivity differences with small molecules. Our study sheds light on the molecular basis of H1R antagonist specificity against H1R.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Mitsunori Shiroishi; Kouhei Tsumoto; Kimie Amano; Yasuo Shirakihara; Marco Colonna; Veronique M. Braud; David S. J. Allan; Azure T. Makadzange; Sarah Rowland-Jones; Benjamin E. Willcox; E. Yvonne Jones; P. Anton van der Merwe; Izumi Kumagai; Katsumi Maenaka
Ig-like transcript 4 (ILT4) (also known as leukocyte Ig-like receptor 2, CD85d, and LILRB2) is a cell surface receptor expressed mainly on myelomonocytic cells, whereas ILT2 (also known as leukocyte Ig-like receptor 1, CD85j, and LILRB1) is expressed on a wider range of immune cells including subsets of natural killer and T cells. Both ILTs contain immunoreceptor tyrosine-based inhibitory receptor motifs in their cytoplasmic tails that inhibit cellular responses by recruiting phosphatases such as SHP-1 (Src homology 2 domain containing tyrosine phosphatase 1). Although these ILTs have been shown to recognize a broad range of classical and nonclassical human MHC class I molecules (MHCIs), their precise binding properties remain controversial. We have used surface plasmon resonance to analyze the interaction of soluble forms of ILT4 and ILT2 with several MHCIs. Although the range of affinities measured was quite broad (Kd = 2–45 μM), some interesting differences were observed. ILT2 generally bound with a 2- to 3-fold higher affinity than ILT4 to the same MHCI. Furthermore, ILT2 and ILT4 bound to HLA-G with a 3- to 4-fold higher affinity than to classical MHCIs, suggesting that ILT/HLA-G recognition may play a dominant role in the regulation of natural killer, T, and myelomonocytic cell activation. Finally, we show that ILT2 and ILT4 effectively compete with CD8 for MHCI binding, raising the possibility that ILT2 modulates CD8+ T cell activation by blocking the CD8 binding as well as by recruiting inhibitory molecules through its immunoreceptor tyrosine-based inhibitory receptor motif.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Mitsunori Shiroishi; Kimiko Kuroki; Linda Rasubala; Kouhei Tsumoto; Izumi Kumagai; Eiji Kurimoto; Koichi Kato; Daisuke Kohda; Katsumi Maenaka
HLA-G is a nonclassical MHC class I (MHCI) molecule that can suppress a wide range of immune responses in the maternal–fetal interface. The human inhibitory immune receptors leukocyte Ig-like receptor (LILR) B1 [also called LIR1, Ig-like transcript 2 (ILT2), or CD85j] and LILRB2 (LIR2/ILT4/CD85d) preferentially recognize HLA-G. HLA-G inherently exhibits various forms, including β2-microglobulin (β2m)-free and disulfide-linked dimer forms. Notably, LILRB1 cannot recognize the β2m-free form of HLA-G or HLA-B27, but LILRB2 can recognize the β2m-free form of HLA-B27. To date, the structural basis for HLA-G/LILR recognition remains to be examined. Here, we report the 2.5-Å resolution crystal structure of the LILRB2/HLA-G complex. LILRB2 exhibits an overlapping but distinct MHCI recognition mode compared with LILRB1 and dominantly recognizes the hydrophobic site of the HLA-G α3 domain. NMR binding studies also confirmed these LILR recognition differences on both conformed (heavy chain/peptide/β2m) and free forms of β2m. Binding studies using β2m-free MHCIs revealed differential β2m-dependent LILR-binding specificities. These results suggest that subtle structural differences between LILRB family members cause the distinct binding specificities to various forms of HLA-G and other MHCIs, which may in turn regulate immune suppression.
Journal of Medicinal Chemistry | 2011
Chris de Graaf; Albert J. Kooistra; Henry F. Vischer; Vsevolod Katritch; Martien Kuijer; Mitsunori Shiroishi; So Iwata; Tatsuro Shimamura; Raymond C. Stevens; Iwan J. P. de Esch; Rob Leurs
The recent crystal structure determinations of druggable class A G protein-coupled receptors (GPCRs) have opened up excellent opportunities in structure-based ligand discovery for this pharmaceutically important protein family. We have developed and validated a customized structure-based virtual fragment screening protocol against the recently determined human histamine H(1) receptor (H(1)R) crystal structure. The method combines molecular docking simulations with a protein-ligand interaction fingerprint (IFP) scoring method. The optimized in silico screening approach was successfully applied to identify a chemically diverse set of novel fragment-like (≤22 heavy atoms) H(1)R ligands with an exceptionally high hit rate of 73%. Of the 26 tested fragments, 19 compounds had affinities ranging from 10 μM to 6 nM. The current study shows the potential of in silico screening against GPCR crystal structures to explore novel, fragment-like GPCR ligand space.
Journal of Biological Chemistry | 2007
Mitsunori Shiroishi; Kouhei Tsumoto; Yoshikazu Tanaka; Akiko Yokota; Takeshi Nakanishi; Hidemasa Kondo; Izumi Kumagai
Tyrosine is an important amino acid in protein-protein interaction hot spots. In particular, many Tyr residues are located in the antigen-binding sites of antibodies and endow high affinity and high specificity to these antibodies. To investigate the role of interfacial Tyr residues in protein-protein interactions, we performed crystallographic studies and thermodynamic analyses of the interaction between hen egg lysozyme (HEL) and the anti-HEL antibody HyHEL-10 Fv fragment. HyHEL-10 has six Tyr residues in its antigen-binding site, which were systematically mutated to Phe and Ala using site-directed mutagenesis. The crystal structures revealed several critical roles for these Tyr residues in the interaction between HEL and HyHEL-10 as follows: 1) the aromatic ring of Tyr-50 in the light chain (LTyr-50) was important for the correct ternary structure of variable regions of the immunoglobulin light chain and heavy chain and of HEL; 2) deletion of the hydroxyl group of Tyr-50 in the heavy chain (HTyr-50) resulted in structural changes in the antigen-antibody interface; and 3) the side chains of HTyr-33 and HTyr-53 may help induce fitting of the antibody to the antigen. Hot spot Tyr residues may contribute to the high affinity and high specificity of the antigen-antibody interaction through a diverse set of structural and thermodynamic interactions.
Journal of Virology | 2005
Mar Valés-Gómez; Mitsunori Shiroishi; Katsumi Maenaka; Hugh Reyburn
ABSTRACT Human cytomegalovirus carries a gene, UL18, that is homologous to cellular major histocompatibility complex (MHC) class I genes. Like MHC class I molecules, the protein product of the UL18 gene associates with β2-microglobulin, and the stability of this complex depends on peptide loading. UL18 protein binds to ILT2 (CD85j), an inhibitory receptor present on B cells, monocytes, dendritic cells, T cells, and NK cells that also recognizes classical and nonclassical MHC molecules. These observations suggest that UL18 may play a role in viral immune evasion, but its real function is unclear. Since this molecule has similarity with polymorphic MHC proteins, we explored whether the UL18 gene varied between virus isolates. We report here that the UL18 gene varies significantly between virus isolates: amino acid substitutions were found in the predicted α1, α2, and α3 domains of the UL18 protein molecule. We also studied the ability of several variant UL18 proteins to bind to the ILT2 receptor. All of the variants tested bound to ILT2, but there were marked differences in the affinity of binding to this receptor. These differences were reflected in functional assays measuring inhibition of the cytotoxic capacity of NK cells via interaction with ILT2. In addition, the variants did not bind other members of the CD85 family. The implications of these data are discussed.
Biochemical and Biophysical Research Communications | 2009
Takami Yurugi-Kobayashi; Hidetsugu Asada; Mitsunori Shiroishi; Tatsuro Shimamura; Saeko Funamoto; Naoko Katsuta; Keisuke Ito; Taishi Sugawara; Natsuko Tokuda; Hirokazu Tsujimoto; Takeshi Murata; Norimichi Nomura; Kazuko Haga; Tatsuya Haga; So Iwata; Takuya Kobayashi
N-linked glycosylation is the most common post-translational modification of G-protein-coupled receptors (GPCRs) and is correlated to the localization and function of the receptors depending on each receptor. However, heterogeneity of glycosylation can interfere with protein crystallization. The removal of N-linked glycosylation from membrane proteins improves the ability to crystallize these proteins. We screened 25 non-glycosylated GPCRs for functional receptor production in the methylotrophic yeast Pichia pastoris using specific ligand-receptor binding assays. We found that five clones were expressed at greater than 10 pmol/mg, 9 clones at 1-10 pmol/mg and 11 clones at less than 1 pmol/mg of membrane protein. Further optimization of culture parameters including culture scale, induction time, pH and temperature enabled us to achieve expression of a functional human muscarinic acetylcholine receptor subtype 2 (CHRM2) with a B(max) value of 51.2 pmol/mg of membrane protein. Approximately 1.9 mg of the human CHRM2 was produced from a 1-L culture.
Journal of Biological Chemistry | 2006
Mitsunori Shiroishi; Mizuho Kajikawa; Kimiko Kuroki; Toyoyuki Ose; Daisuke Kohda; Katsumi Maenaka
Human leukocyte Ig-like receptor B1 (LILRB1) and B2 (LILRB2) belong to “Group 1” receptors and recognize a broad range of major histocompatibility complex class I molecules (MHCIs). In contrast, “Group 2” receptors show low similarity with LILRB1/B2, and their ligands remain to be identified. To date, the structural and functional characteristics of Group 2 LILRs are poorly understood. Here we report the crystal structure of the extracellular domain of LILRA5, which is an activating Group 2 LILR expressed on monocytes and neutrophils. Unexpectedly, the structure showed large changes in structural conformation and charge distribution in the region corresponding to the MHCI binding site of LILRB1/B2, which are also distinct from killer cell Ig-like receptors and Fcα receptors. These changes probably confer the structural hindrance for the MHCI binding, and their key amino acid substitutions are well conserved in Group 2 LILRs. Consistently, the surface plasmon resonance and flow cytometric analyses demonstrated that LILRA5 exhibited no affinities to all tested MHCIs. These results raised the possibility that LILRA5 as well as Group 2 LILRs do not play a role in any MHCI recognition but could possibly bind to non-MHCI ligand(s) on the target cells to provide a novel immune regulation mechanism.
Microbial Cell Factories | 2012
Mitsunori Shiroishi; Hirokazu Tsujimoto; Hisayoshi Makyio; Hidetsugu Asada; Takami Yurugi-Kobayashi; Tatsuro Shimamura; Takeshi Murata; Norimichi Nomura; Tatsuya Haga; So Iwata; Takuya Kobayashi
BackgroundRecent successes in the determination of G-protein coupled receptor (GPCR) structures have relied on the ability of receptor variants to overcome difficulties in expression and purification. Therefore, the quick screening of functionally expressed stable receptor variants is vital.ResultsWe developed a platform using Saccharomyces cerevisiae for the rapid construction and evaluation of functional GPCR variants for structural studies. This platform enables us to perform a screening cycle from construction to evaluation of variants within 6–7 days. We firstly confirmed the functional expression of 25 full-length class A GPCRs in this platform. Then, in order to improve the expression level and stability, we generated and evaluated the variants of the four GPCRs (hADRB2, hCHRM2, hHRH1 and hNTSR1). These stabilized receptor variants improved both functional activity and monodispersity. Finally, the expression level of the stabilized hHRH1 in Pichia pastoris was improved up to 65 pmol/mg from negligible expression of the functional full-length receptor in S. cerevisiae at first screening. The stabilized hHRH1 was able to be purified for use in crystallization trials.ConclusionsWe demonstrated that the S. cerevisiae system should serve as an easy-to-handle and rapid platform for the construction and evaluation of GPCR variants. This platform can be a powerful prescreening method to identify a suitable GPCR variant for crystallography.