Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kimmo Palin is active.

Publication


Featured researches published by Kimmo Palin.


Cell | 2013

DNA-binding specificities of human transcription factors.

Arttu Jolma; Jian Yan; Thomas Whitington; Jarkko Toivonen; Kazuhiro R. Nitta; Pasi Rastas; Ekaterina Morgunova; Martin Enge; Mikko Taipale; Gong-Hong Wei; Kimmo Palin; Juan M. Vaquerizas; Renaud Vincentelli; Nicholas M. Luscombe; Timothy R. Hughes; Patrick Lemaire; Esko Ukkonen; Teemu Kivioja; Jussi Taipale

Although the proteins that read the gene regulatory code, transcription factors (TFs), have been largely identified, it is not well known which sequences TFs can recognize. We have analyzed the sequence-specific binding of human TFs using high-throughput SELEX and ChIP sequencing. A total of 830 binding profiles were obtained, describing 239 distinctly different binding specificities. The models represent the majority of human TFs, approximately doubling the coverage compared to existing systematic studies. Our results reveal additional specificity determinants for a large number of factors for which a partial specificity was known, including a commonly observed A- or T-rich stretch that flanks the core motifs. Global analysis of the data revealed that homodimer orientation and spacing preferences, and base-stacking interactions, have a larger role in TF-DNA binding than previously appreciated. We further describe a binding model incorporating these features that is required to understand binding of TFs to DNA.


Nature Genetics | 2009

The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling

Sari Tuupanen; Mikko P. Turunen; Rainer Lehtonen; Outi Hallikas; Sakari Vanharanta; Teemu Kivioja; Mikael Björklund; Gong-Hong Wei; Jian Yan; Iina Niittymäki; Jukka Pekka Mecklin; Heikki Järvinen; Ari Ristimäki; Mariachiara Di-Bernardo; Phil East; Luis Carvajal-Carmona; Richard S. Houlston; Ian Tomlinson; Kimmo Palin; Esko Ukkonen; Auli Karhu; Jussi Taipale; Lauri A. Aaltonen

Homozygosity for the G allele of rs6983267 at 8q24 increases colorectal cancer (CRC) risk ∼1.5 fold. We report here that the risk allele G shows copy number increase during CRC development. Our computer algorithm, Enhancer Element Locator (EEL), identified an enhancer element that contains rs6983267. The element drove expression of a reporter gene in a pattern that is consistent with regulation by the key CRC pathway Wnt. rs6983267 affects a binding site for the Wnt-regulated transcription factor TCF4, with the risk allele G showing stronger binding in vitro and in vivo. Genome-wide ChIP assay revealed the element as the strongest TCF4 binding site within 1 Mb of MYC. An unambiguous correlation between rs6983267 genotype and MYC expression was not detected, and additional work is required to scrutinize all possible targets of the enhancer. Our work provides evidence that the common CRC predisposition associated with 8q24 arises from enhanced responsiveness to Wnt signaling.


The EMBO Journal | 2010

Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo

Gong-Hong Wei; Gwenael Badis; Michael F. Berger; Teemu Kivioja; Kimmo Palin; Martin Enge; Martin Bonke; Arttu Jolma; Markku Varjosalo; Andrew R. Gehrke; Jian Yan; Shaheynoor Talukder; Mikko Turunen; Mikko Taipale; Hendrik G. Stunnenberg; Esko Ukkonen; Timothy R. Hughes; Martha L. Bulyk; Jussi Taipale

Members of the large ETS family of transcription factors (TFs) have highly similar DNA‐binding domains (DBDs)—yet they have diverse functions and activities in physiology and oncogenesis. Some differences in DNA‐binding preferences within this family have been described, but they have not been analysed systematically, and their contributions to targeting remain largely uncharacterized. We report here the DNA‐binding profiles for all human and mouse ETS factors, which we generated using two different methods: a high‐throughput microwell‐based TF DNA‐binding specificity assay, and protein‐binding microarrays (PBMs). Both approaches reveal that the ETS‐binding profiles cluster into four distinct classes, and that all ETS factors linked to cancer, ERG, ETV1, ETV4 and FLI1, fall into just one of these classes. We identify amino‐acid residues that are critical for the differences in specificity between all the classes, and confirm the specificities in vivo using chromatin immunoprecipitation followed by sequencing (ChIP‐seq) for a member of each class. The results indicate that even relatively small differences in in vitro binding specificity of a TF contribute to site selectivity in vivo.


Genome Research | 2010

Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities

Arttu Jolma; Teemu Kivioja; Jarkko Toivonen; Lu Cheng; Gong-Hong Wei; Martin Enge; Mikko Taipale; Juan M. Vaquerizas; Jian Yan; Mikko J. Sillanpää; Martin Bonke; Kimmo Palin; Shaheynoor Talukder; Timothy Hughes; Nicholas M. Luscombe; Esko Ukkonen; Jussi Taipale

The genetic code-the binding specificity of all transfer-RNAs--defines how protein primary structure is determined by DNA sequence. DNA also dictates when and where proteins are expressed, and this information is encoded in a pattern of specific sequence motifs that are recognized by transcription factors. However, the DNA-binding specificity is only known for a small fraction of the approximately 1400 human transcription factors (TFs). We describe here a high-throughput method for analyzing transcription factor binding specificity that is based on systematic evolution of ligands by exponential enrichment (SELEX) and massively parallel sequencing. The method is optimized for analysis of large numbers of TFs in parallel through the use of affinity-tagged proteins, barcoded selection oligonucleotides, and multiplexed sequencing. Data are analyzed by a new bioinformatic platform that uses the hundreds of thousands of sequencing reads obtained to control the quality of the experiments and to generate binding motifs for the TFs. The described technology allows higher throughput and identification of much longer binding profiles than current microarray-based methods. In addition, as our method is based on proteins expressed in mammalian cells, it can also be used to characterize DNA-binding preferences of full-length proteins or proteins requiring post-translational modifications. We validate the method by determining binding specificities of 14 different classes of TFs and by confirming the specificities for NFATC1 and RFX3 using ChIP-seq. Our results reveal unexpected dimeric modes of binding for several factors that were thought to preferentially bind DNA as monomers.


Nature Genetics | 2015

CTCF/cohesin-binding sites are frequently mutated in cancer

Riku Katainen; Kashyap Dave; Esa Pitkänen; Kimmo Palin; Teemu Kivioja; Niko Välimäki; Alexandra E. Gylfe; Heikki Ristolainen; Ulrika A. Hänninen; Tatiana Cajuso; Johanna Kondelin; Tomas Tanskanen; Jukka-Pekka Mecklin; Heikki Järvinen; Laura Renkonen-Sinisalo; Anna Lepistö; Eevi Kaasinen; Outi Kilpivaara; Sari Tuupanen; Martin Enge; Jussi Taipale; Lauri A. Aaltonen

Cohesin is present in almost all active enhancer regions, where it is associated with transcription factors. Cohesin frequently colocalizes with CTCF (CCCTC-binding factor), affecting genomic stability, expression and epigenetic homeostasis. Cohesin subunits are mutated in cancer, but CTCF/cohesin-binding sites (CBSs) in DNA have not been examined for mutations. Here we report frequent mutations at CBSs in cancers displaying a mutational signature where mutations in A•T base pairs predominate. Integration of whole-genome sequencing data from 213 colorectal cancer (CRC) samples and chromatin immunoprecipitation sequencing (ChIP-exo) data identified frequent point mutations at CBSs. In contrast, CRCs showing an ultramutator phenotype caused by defects in the exonuclease domain of DNA polymerase ɛ (POLE) displayed significantly fewer mutations at and adjacent to CBSs. Analysis of public data showed that multiple cancer types accumulate CBS mutations. CBSs are a major mutational hotspot in the noncoding cancer genome.


Cell Reports | 2014

Uterine Leiomyoma-Linked MED12 Mutations Disrupt Mediator-Associated CDK Activity

Mikko P. Turunen; Jason M. Spaeth; Salla Keskitalo; Min Ju Park; Teemu Kivioja; Alison D. Clark; Netta Mäkinen; Fangjian Gao; Kimmo Palin; Helka Nurkkala; Anna Vähärautio; Mervi Aavikko; Kati Kämpjärvi; Pia Vahteristo; Chongwoo A. Kim; Lauri A. Aaltonen; Markku Varjosalo; Jussi Taipale; Thomas G. Boyer

Somatic mutations in exon 2 of the RNA polymerase II transcriptional Mediator subunit MED12 occur at very high frequency (∼70%) in uterine leiomyomas. However, the influence of these mutations on Mediator function and the molecular basis for their tumorigenic potential remain unknown. To clarify the impact of these mutations, we used affinity-purification mass spectrometry to establish the global protein-protein interaction profiles for both wild-type and mutant MED12. We found that uterine leiomyoma-linked mutations in MED12 led to a highly specific decrease in its association with Cyclin C-CDK8/CDK19 and loss of Mediator-associated CDK activity. Mechanistically, this occurs through disruption of a MED12-Cyclin C binding interface that we also show is required for MED12-mediated stimulation of Cyclin C-dependent CDK8 kinase activity. These findings indicate that uterine leiomyoma-linked mutations in MED12 uncouple Cyclin C-CDK8/19 from core Mediator and further identify the MED12/Cyclin C interface as a prospective therapeutic target in CDK8-driven cancers.


Nature Protocols | 2006

Locating potential enhancer elements by comparative genomics using the EEL software

Kimmo Palin; Jussi Taipale; Esko Ukkonen

This protocol describes the use of Enhancer Element Locator (EEL), a computer program that was designed to locate distal enhancer elements in long mammalian sequences. EEL will predict the location and structure of conserved enhancers after being provided with two orthologous DNA sequences and binding specificity matrices for the transcription factors (TFs) that are expected to contribute to the function of the enhancers to be identified. The freely available EEL software can analyze two 1-Mb sequences with 100 TF motifs in about 15 min on a modern Windows, Linux or Mac computer. The output provides several hypotheses about enhancer location and structure for further evaluation by an expert on enhancer function.


Genetic Epidemiology | 2011

Identity-by-descent-based phasing and imputation in founder populations using graphical models

Kimmo Palin; Harry Campbell; Alan F. Wright; James F. Wilson; Richard Durbin

Accurate knowledge of haplotypes, the combination of alleles co‐residing on a single copy of a chromosome, enables powerful gene mapping and sequence imputation methods. Since humans are diploid, haplotypes must be derived from genotypes by a phasing process. In this study, we present a new computational model for haplotype phasing based on pairwise sharing of haplotypes inferred to be Identical‐By‐Descent (IBD). We apply the Bayesian network based model in a new phasing algorithm, called systematic long‐range phasing (SLRP), that can capitalize on the close genetic relationships in isolated founder populations, and show with simulated and real genome‐wide genotype data that SLRP substantially reduces the rate of phasing errors compared to previous phasing algorithms. Furthermore, the method accurately identifies regions of IBD, enabling linkage‐like studies without pedigrees, and can be used to impute most genotypes with very low error rate. Genet. Epidemiol. 2011.  © 2011 Wiley Periodicals, Inc.35:853‐860, 2011


British Journal of Cancer | 2016

Mendelian randomisation analysis strongly implicates adiposity with risk of developing colorectal cancer

David Jarvis; Jonathan S. Mitchell; Philip J. Law; Kimmo Palin; Sari Tuupanen; Alexandra E. Gylfe; Ulrika A. Hänninen; Tatiana Cajuso; Tomas Tanskanen; Johanna Kondelin; Eevi Kaasinen; Antti Pekka Sarin; Jaakko Kaprio; Johan G. Eriksson; Harri Rissanen; Paul Knekt; Eero Pukkala; Pekka Jousilahti; Veikko Salomaa; Samuli Ripatti; Aarno Palotie; Heikki Järvinen; Laura Renkonen-Sinisalo; Anna Lepistö; Jan Böhm; Jukka Pekka Meklin; Nada A. Al-Tassan; Claire Palles; Lynn Martin; Ella Barclay

Background:Observational studies have associated adiposity with an increased risk of colorectal cancer (CRC). However, such studies do not establish a causal relationship. To minimise bias from confounding we performed a Mendelian randomisation (MR) analysis to examine the relationship between adiposity and CRC.Methods:We used SNPs associated with adult body mass index (BMI), waist-hip ratio (WHR), childhood obesity and birth weight as instrumental variables in a MR analysis of 9254 CRC cases and 18 386 controls.Results:In the MR analysis, the odds ratios (ORs) of CRC risk per unit increase in BMI, WHR and childhood obesity were 1.23 (95% CI: 1.02–1.49, P=0.033), 1.59 (95% CI: 1.08–2.34, P=0.019) and 1.07 (95% CI: 1.03–1.13, P=0.018), respectively. There was no evidence for association between birth weight and CRC (OR=1.22, 95% CI: 0.89–1.67, P=0.22). Combining these data with a concurrent MR-based analysis for BMI and WHR with CRC risk (totalling to 18 190 cases, 27 617 controls) provided increased support, ORs for BMI and WHR were 1.26 (95% CI: 1.10–1.44, P=7.7 × 10−4) and 1.40 (95% CI: 1.14–1.72, P=1.2 × 10−3), respectively.Conclusions:These data provide further evidence for a strong causal relationship between adiposity and the risk of developing CRC highlighting the urgent need for prevention and treatment of adiposity.


European Journal of Cancer | 2017

Pro-inflammatory fatty acid profile and colorectal cancer risk: A Mendelian randomisation analysis.

Sebastian May-Wilson; Amit Sud; Philip J. Law; Kimmo Palin; Sari Tuupanen; Alexandra E. Gylfe; Ulrika A. Hänninen; Tatiana Cajuso; Tomas Tanskanen; Johanna Kondelin; Eevi Kaasinen; Antti Pekka Sarin; Johan G. Eriksson; Harri Rissanen; Paul Knekt; Eero Pukkala; Pekka Jousilahti; Veikko Salomaa; Samuli Ripatti; Aarno Palotie; Laura Renkonen-Sinisalo; Anna Lepistö; Jan Böhm; Jukka Pekka Mecklin; Nada A. Al-Tassan; Claire Palles; Susan M. Farrington; Maria Timofeeva; Brian F. Meyer; Salma M. Wakil

Background While dietary fat has been established as a risk factor for colorectal cancer (CRC), associations between fatty acids (FAs) and CRC have been inconsistent. Using Mendelian randomisation (MR), we sought to evaluate associations between polyunsaturated (PUFA), monounsaturated (MUFA) and saturated FAs (SFAs) and CRC risk. Methods We analysed genotype data on 9254 CRC cases and 18,386 controls of European ancestry. Externally weighted polygenic risk scores were generated and used to evaluate associations with CRC per one standard deviation increase in genetically defined plasma FA levels. Results Risk reduction was observed for oleic and palmitoleic MUFAs (OROA = 0.77, 95% CI: 0.65–0.92, P = 3.9 × 10−3; ORPOA = 0.36, 95% CI: 0.15–0.84, P = 0.018). PUFAs linoleic and arachidonic acid had negative and positive associations with CRC respectively (ORLA = 0.95, 95% CI: 0.93–0.98, P = 3.7 × 10−4; ORAA = 1.05, 95% CI: 1.02–1.07, P = 1.7 × 10−4). The SFA stearic acid was associated with increased CRC risk (ORSA = 1.17, 95% CI: 1.01–1.35, P = 0.041). Conclusion Results from our analysis are broadly consistent with a pro-inflammatory FA profile having a detrimental effect in terms of CRC risk.

Collaboration


Dive into the Kimmo Palin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge