Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomas Tanskanen is active.

Publication


Featured researches published by Tomas Tanskanen.


Nature Genetics | 2015

CTCF/cohesin-binding sites are frequently mutated in cancer

Riku Katainen; Kashyap Dave; Esa Pitkänen; Kimmo Palin; Teemu Kivioja; Niko Välimäki; Alexandra E. Gylfe; Heikki Ristolainen; Ulrika A. Hänninen; Tatiana Cajuso; Johanna Kondelin; Tomas Tanskanen; Jukka-Pekka Mecklin; Heikki Järvinen; Laura Renkonen-Sinisalo; Anna Lepistö; Eevi Kaasinen; Outi Kilpivaara; Sari Tuupanen; Martin Enge; Jussi Taipale; Lauri A. Aaltonen

Cohesin is present in almost all active enhancer regions, where it is associated with transcription factors. Cohesin frequently colocalizes with CTCF (CCCTC-binding factor), affecting genomic stability, expression and epigenetic homeostasis. Cohesin subunits are mutated in cancer, but CTCF/cohesin-binding sites (CBSs) in DNA have not been examined for mutations. Here we report frequent mutations at CBSs in cancers displaying a mutational signature where mutations in A•T base pairs predominate. Integration of whole-genome sequencing data from 213 colorectal cancer (CRC) samples and chromatin immunoprecipitation sequencing (ChIP-exo) data identified frequent point mutations at CBSs. In contrast, CRCs showing an ultramutator phenotype caused by defects in the exonuclease domain of DNA polymerase ɛ (POLE) displayed significantly fewer mutations at and adjacent to CBSs. Analysis of public data showed that multiple cancer types accumulate CBS mutations. CBSs are a major mutational hotspot in the noncoding cancer genome.


International Journal of Cancer | 2014

Exome sequencing reveals frequent inactivating mutations in ARID1A, ARID1B, ARID2 and ARID4A in microsatellite unstable colorectal cancer

Tatiana Cajuso; Ulrika A. Hänninen; Johanna Kondelin; Alexandra E. Gylfe; Tomas Tanskanen; Riku Katainen; Esa Pitkänen; Heikki Ristolainen; Eevi Kaasinen; Minna Taipale; Jussi Taipale; Jan Böhm; Laura Renkonen-Sinisalo; Jukka-Pekka Mecklin; Heikki Järvinen; Sari Tuupanen; Outi Kilpivaara; Pia Vahteristo

ARID1A has been identified as a novel tumor suppressor gene in ovarian cancer and subsequently in various other tumor types. ARID1A belongs to the ARID domain containing gene family, which comprises of 15 genes involved, for example, in transcriptional regulation, proliferation and chromatin remodeling. In this study, we used exome sequencing data to analyze the mutation frequency of all the ARID domain containing genes in 25 microsatellite unstable (MSI) colorectal cancers (CRCs) as a first systematic effort to characterize the mutation pattern of the whole ARID gene family. Genes which fulfilled the selection criteria in this discovery set (mutations in at least 4/25 [16%] samples, including at least one nonsense or splice site mutation) were chosen for further analysis in an independent validation set of 21 MSI CRCs. We found that in addition to ARID1A, which was mutated in 39% of the tumors (18/46), also ARID1B (13%, 6/46), ARID2 (13%, 6/46) and ARID4A (20%, 9/46) were frequently mutated. In all these genes, the mutations were distributed along the entire length of the gene, thus distinguishing them from typical MSI target genes previously described. Our results indicate that in addition to ARID1A, other members of the ARID gene family may play a role in MSI CRC.


PLOS Genetics | 2013

Eleven Candidate Susceptibility Genes for Common Familial Colorectal Cancer

Alexandra E. Gylfe; Riku Katainen; Johanna Kondelin; Tomas Tanskanen; Tatiana Cajuso; Ulrika A. Hänninen; Jussi Taipale; Minna Taipale; Laura Renkonen-Sinisalo; Heikki Järvinen; Jukka-Pekka Mecklin; Outi Kilpivaara; Esa Pitkänen; Pia Vahteristo; Sari Tuupanen; Auli Karhu; Lauri A. Aaltonen

Hereditary factors are presumed to play a role in one third of colorectal cancer (CRC) cases. However, in the majority of familial CRC cases the genetic basis of predisposition remains unexplained. This is particularly true for families with few affected individuals. To identify susceptibility genes for this common phenotype, we examined familial cases derived from a consecutive series of 1514 Finnish CRC patients. Ninety-six familial CRC patients with no previous diagnosis of a hereditary CRC syndrome were included in the analysis. Eighty-six patients had one affected first-degree relative, and ten patients had two or more. Exome sequencing was utilized to search for genes harboring putative loss-of-function variants, because such alterations are likely candidates for disease-causing mutations. Eleven genes with rare truncating variants in two or three familial CRC cases were identified: UACA, SFXN4, TWSG1, PSPH, NUDT7, ZNF490, PRSS37, CCDC18, PRADC1, MRPL3, and AKR1C4. Loss of heterozygosity was examined in all respective cancer samples, and was detected in seven occasions involving four of the candidate genes. In all seven occasions the wild-type allele was lost (P = 0.0078) providing additional evidence that these eleven genes are likely to include true culprits. The study provides a set of candidate predisposition genes which may explain a subset of common familial CRC. Additional genetic validation in other populations is required to provide firm evidence for causality, as well as to characterize the natural history of the respective phenotypes.


British Journal of Cancer | 2016

Mendelian randomisation analysis strongly implicates adiposity with risk of developing colorectal cancer

David Jarvis; Jonathan S. Mitchell; Philip J. Law; Kimmo Palin; Sari Tuupanen; Alexandra E. Gylfe; Ulrika A. Hänninen; Tatiana Cajuso; Tomas Tanskanen; Johanna Kondelin; Eevi Kaasinen; Antti Pekka Sarin; Jaakko Kaprio; Johan G. Eriksson; Harri Rissanen; Paul Knekt; Eero Pukkala; Pekka Jousilahti; Veikko Salomaa; Samuli Ripatti; Aarno Palotie; Heikki Järvinen; Laura Renkonen-Sinisalo; Anna Lepistö; Jan Böhm; Jukka Pekka Meklin; Nada A. Al-Tassan; Claire Palles; Lynn Martin; Ella Barclay

Background:Observational studies have associated adiposity with an increased risk of colorectal cancer (CRC). However, such studies do not establish a causal relationship. To minimise bias from confounding we performed a Mendelian randomisation (MR) analysis to examine the relationship between adiposity and CRC.Methods:We used SNPs associated with adult body mass index (BMI), waist-hip ratio (WHR), childhood obesity and birth weight as instrumental variables in a MR analysis of 9254 CRC cases and 18 386 controls.Results:In the MR analysis, the odds ratios (ORs) of CRC risk per unit increase in BMI, WHR and childhood obesity were 1.23 (95% CI: 1.02–1.49, P=0.033), 1.59 (95% CI: 1.08–2.34, P=0.019) and 1.07 (95% CI: 1.03–1.13, P=0.018), respectively. There was no evidence for association between birth weight and CRC (OR=1.22, 95% CI: 0.89–1.67, P=0.22). Combining these data with a concurrent MR-based analysis for BMI and WHR with CRC risk (totalling to 18 190 cases, 27 617 controls) provided increased support, ORs for BMI and WHR were 1.26 (95% CI: 1.10–1.44, P=7.7 × 10−4) and 1.40 (95% CI: 1.14–1.72, P=1.2 × 10−3), respectively.Conclusions:These data provide further evidence for a strong causal relationship between adiposity and the risk of developing CRC highlighting the urgent need for prevention and treatment of adiposity.


British Journal of Cancer | 2014

Identification of 33 candidate oncogenes by screening for base-specific mutations.

Sari Tuupanen; Ulrika A. Hänninen; Johanna Kondelin; P von Nandelstadh; Tatiana Cajuso; Alexandra E. Gylfe; Riku Katainen; Tomas Tanskanen; Heikki Ristolainen; Jan Böhm; J-P Mecklin; Heikki Järvinen; Laura Renkonen-Sinisalo; C L Andersen; Minna Taipale; Jussi Taipale; Pia Vahteristo; Kaisa Lehti; Esa Pitkänen; Lauri A. Aaltonen

Background:Genes with recurrent codon-specific somatic mutations are likely drivers of tumorigenesis and potential therapeutic targets. Hypermutable cancers may represent a sensitive system for generation and selection of oncogenic mutations.Methods:We utilised exome-sequencing data on 25 sporadic microsatellite-instable (MSI) colorectal cancers (CRCs) and searched for base-specific somatic mutation hotspots.Results:We identified novel mutation hotspots in 33 genes. Fourteen genes displayed mutations in the validation set of 254 MSI CRCs: ANTXR1, MORC2, CEP135, CRYBB1, GALNT9, KRT82, PI15, SLC36A1, CNTF, GLDC, MBTPS1, OR9Q2, R3HDM1 and TTPAL. A database search found examples of the hotspot mutations in multiple cancer types.Conclusions:This work reveals a variety of new recurrent candidate oncogene mutations to be further scrutinised as potential therapeutic targets.


European Journal of Cancer | 2017

Pro-inflammatory fatty acid profile and colorectal cancer risk: A Mendelian randomisation analysis.

Sebastian May-Wilson; Amit Sud; Philip J. Law; Kimmo Palin; Sari Tuupanen; Alexandra E. Gylfe; Ulrika A. Hänninen; Tatiana Cajuso; Tomas Tanskanen; Johanna Kondelin; Eevi Kaasinen; Antti Pekka Sarin; Johan G. Eriksson; Harri Rissanen; Paul Knekt; Eero Pukkala; Pekka Jousilahti; Veikko Salomaa; Samuli Ripatti; Aarno Palotie; Laura Renkonen-Sinisalo; Anna Lepistö; Jan Böhm; Jukka Pekka Mecklin; Nada A. Al-Tassan; Claire Palles; Susan M. Farrington; Maria Timofeeva; Brian F. Meyer; Salma M. Wakil

Background While dietary fat has been established as a risk factor for colorectal cancer (CRC), associations between fatty acids (FAs) and CRC have been inconsistent. Using Mendelian randomisation (MR), we sought to evaluate associations between polyunsaturated (PUFA), monounsaturated (MUFA) and saturated FAs (SFAs) and CRC risk. Methods We analysed genotype data on 9254 CRC cases and 18,386 controls of European ancestry. Externally weighted polygenic risk scores were generated and used to evaluate associations with CRC per one standard deviation increase in genetically defined plasma FA levels. Results Risk reduction was observed for oleic and palmitoleic MUFAs (OROA = 0.77, 95% CI: 0.65–0.92, P = 3.9 × 10−3; ORPOA = 0.36, 95% CI: 0.15–0.84, P = 0.018). PUFAs linoleic and arachidonic acid had negative and positive associations with CRC respectively (ORLA = 0.95, 95% CI: 0.93–0.98, P = 3.7 × 10−4; ORAA = 1.05, 95% CI: 1.02–1.07, P = 1.7 × 10−4). The SFA stearic acid was associated with increased CRC risk (ORSA = 1.17, 95% CI: 1.01–1.35, P = 0.041). Conclusion Results from our analysis are broadly consistent with a pro-inflammatory FA profile having a detrimental effect in terms of CRC risk.


International Journal of Cancer | 2017

Mendelian randomisation implicates hyperlipidaemia as a risk factor for colorectal cancer.

Henry Rodriguez-Broadbent; Philip J. Law; Amit Sud; Kimmo Palin; Sari Tuupanen; Alexandra E. Gylfe; Ulrika A. Hänninen; Tatiana Cajuso; Tomas Tanskanen; Johanna Kondelin; Eevi Kaasinen; Antti Pekka Sarin; Samuli Ripatti; Johan G. Eriksson; Harri Rissanen; Paul Knekt; Eero Pukkala; Pekka Jousilahti; Veikko Salomaa; Aarno Palotie; Laura Renkonen-Sinisalo; Anna Lepistö; Jan Böhm; Jukka Pekka Mecklin; Nada A. Al-Tassan; Claire Palles; Lynn Martin; Ella Barclay; Susan M. Farrington; Maria Timofeeva

While elevated blood cholesterol has been associated with an increased risk of colorectal cancer (CRC) in observational studies, causality is uncertain. Here we apply a Mendelian randomisation (MR) analysis to examine the potential causal relationship between lipid traits and CRC risk. We used single nucleotide polymorphisms (SNPs) associated with blood levels of total cholesterol (TC), triglyceride (TG), low‐density lipoprotein (LDL), and high‐density lipoprotein (HDL) as instrumental variables (IV). We calculated MR estimates for each risk factor with CRC using SNP‐CRC associations from 9,254 cases and 18,386 controls. Genetically predicted higher TC was associated with an elevated risk of CRC (odds ratios (OR) per unit SD increase = 1.46, 95% confidence interval [CI]: 1.20–1.79, p = 1.68 × 10−4). The pooled ORs for LDL, HDL, and TG were 1.05 (95% CI: 0.92–1.18, p = 0.49), 0.94 (95% CI: 0.84–1.05, p = 0.27), and 0.98 (95% CI: 0.85–1.12, p = 0.75) respectively. A genetic risk score for 3‐hydoxy‐3‐methylglutaryl‐coenzyme A reductase (HMGCR) to mimic the effects of statin therapy was associated with a reduced CRC risk (OR = 0.69, 95% CI: 0.49–0.99, p = 0.046). This study supports a causal relationship between higher levels of TC with CRC risk, and a further rationale for implementing public health strategies to reduce the prevalence of hyperlipidaemia.


Cancer Genetics and Cytogenetics | 2015

Systematic search for rare variants in Finnish early-onset colorectal cancer patients

Tomas Tanskanen; Alexandra E. Gylfe; Riku Katainen; Minna Taipale; Laura Renkonen-Sinisalo; Heikki Järvinen; Jukka-Pekka Mecklin; Jan Böhm; Outi Kilpivaara; Esa Pitkänen; Kimmo Palin; Pia Vahteristo; Sari Tuupanen; Lauri A. Aaltonen

The heritability of colorectal cancer (CRC) is incompletely understood, and the contribution of undiscovered rare variants may be important. In search of rare disease-causing variants, we exome sequenced 22 CRC patients who were diagnosed before the age of 40 years. Exome sequencing data from 95 familial CRC patients were available as a validation set. Cases with known CRC syndromes were excluded. All patients were from Finland, a country known for its genetically homogenous population. We searched for rare nonsynonymous variants with allele frequencies below 0.1% in 3,374 Finnish and 58,112 non-Finnish controls. In addition, homozygous and compound heterozygous variants were studied. No genes with rare loss-of-function variants were present in more than one early-onset CRC patient. Three genes (ADAMTS4, CYTL1, and SYNE1) harbored rare loss-of-function variants in both early-onset and familial CRC cases. Five genes with homozygous variants in early-onset CRC cases were found (MCTP2, ARHGAP12, ATM, DONSON, and ROS1), including one gene (MCTP2) with a homozygous splice site variant. All discovered homozygous variants were exclusive to one early-onset CRC case. Independent replication is required to associate the discovered variants with CRC. These findings, together with a lack of family history in 19 of 22 (86%) early-onset patients, suggest genetic heterogeneity in unexplained early-onset CRC patients, thus emphasizing the requirement for large sample sizes and careful study designs to elucidate the role of rare variants in CRC susceptibility.


Scandinavian Journal of Gastroenterology | 2013

Exome sequencing in diagnostic evaluation of colorectal cancer predisposition in young patients.

Tomas Tanskanen; Alexandra E. Gylfe; Riku Katainen; Minna Taipale; Laura Renkonen-Sinisalo; Jukka-Pekka Mecklin; Heikki Järvinen; Sari Tuupanen; Outi Kilpivaara; Pia Vahteristo; Lauri A. Aaltonen

Abstract Objective. Early-onset colorectal cancer (CRC), defined here as age of onset less than 40 years, develops frequently in genetically predisposed individuals. Next-generation sequencing is an increasingly available option in the diagnostic workup of suspected hereditary susceptibility, but little is known about the practical feasibility and additional diagnostic yield of the technology in this patient group. Materials and methods. We analyzed 38 young CRC patients derived from a set of 1514 CRC cases. All 38 tumors had been tested in our laboratory for microsatellite instability (MSI), and Sanger sequencing had been used to screen for MLH1 and MSH2 mutations in MSI cases. Also, gastrointestinal polyposis had been diagnosed clinically and molecularly. Family histories were acquired from national registries. If inherited syndromes had not been diagnosed in routine diagnostic efforts (n = 23), normal tissue DNA was analyzed for mutations in a comprehensive set of high-penetrance genes (MLH1, MSH2, MSH6, PMS2, APC, MUTYH, SMAD4, BMPR1A, LKB1/STK11, and PTEN) by exome sequencing. Results. CRC predisposition syndromes were confirmed in 42% (16/38) of early-onset CRC patients. Hereditary nonpolyposis colorectal cancer was diagnosed in 12 (32%) patients, familial adenomatous polyposis in three (7.9%), and juvenile polyposis in one (2.6%) patient. Exome sequencing revealed one additional MLH1 mutation. Over half of the patients had advanced cancers (Dukes C or D, 61%, 23/38). The majority of nonsyndromic patients had unaffected first-degree relatives and microsatellite-stable tumors. Conclusions. Microsatellite instability positivity or gastrointestinal polyposis characterized all patients with unambiguous highly penetrant germline mutations. In our series, exome sequencing produced little added value in diagnosing the underlying predisposition conditions.


WOS | 2017

Mendelian randomisation implicates hyperlipidaemia as a risk factor for colorectal cancer

Henry Rodriguez-Broadbent; Philip J. Law; Amit Sud; Kimmo Palin; Sari Tuupanen; Alexandra E. Gylfe; Ulrika A. Hänninen; Tatiana Cajuso; Tomas Tanskanen; Johanna Kondelin; Eevi Kaasinen; Antti-Pekka Sarin; Samuli Ripatti; Johan G. Eriksson; Harri Rissanen; Paul Knekt; Eero Pukkala; Pekka Jousilahti; Veikko Salomaa; Aarno Palotie; Laura Renkonen-Sinisalo; Anna Lepistö; Jan Böhm; Jukka-Pekka Mecklin; Nada A. Al-Tassan; Claire Palles; Lynn Martin; Ella Barclay; Susan M. Farrington; Maria Timofeeva

While elevated blood cholesterol has been associated with an increased risk of colorectal cancer (CRC) in observational studies, causality is uncertain. Here we apply a Mendelian randomisation (MR) analysis to examine the potential causal relationship between lipid traits and CRC risk. We used single nucleotide polymorphisms (SNPs) associated with blood levels of total cholesterol (TC), triglyceride (TG), low‐density lipoprotein (LDL), and high‐density lipoprotein (HDL) as instrumental variables (IV). We calculated MR estimates for each risk factor with CRC using SNP‐CRC associations from 9,254 cases and 18,386 controls. Genetically predicted higher TC was associated with an elevated risk of CRC (odds ratios (OR) per unit SD increase = 1.46, 95% confidence interval [CI]: 1.20–1.79, p = 1.68 × 10−4). The pooled ORs for LDL, HDL, and TG were 1.05 (95% CI: 0.92–1.18, p = 0.49), 0.94 (95% CI: 0.84–1.05, p = 0.27), and 0.98 (95% CI: 0.85–1.12, p = 0.75) respectively. A genetic risk score for 3‐hydoxy‐3‐methylglutaryl‐coenzyme A reductase (HMGCR) to mimic the effects of statin therapy was associated with a reduced CRC risk (OR = 0.69, 95% CI: 0.49–0.99, p = 0.046). This study supports a causal relationship between higher levels of TC with CRC risk, and a further rationale for implementing public health strategies to reduce the prevalence of hyperlipidaemia.

Collaboration


Dive into the Tomas Tanskanen's collaboration.

Top Co-Authors

Avatar

Kimmo Palin

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jukka-Pekka Mecklin

University of Eastern Finland

View shared research outputs
Researchain Logo
Decentralizing Knowledge