Kin On Kwok
University of Hong Kong
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kin On Kwok.
PLOS Medicine | 2011
Steven Riley; Kin On Kwok; Kendra M. Wu; Danny Y. Ning; Benjamin J. Cowling; Joseph T. Wu; Lai-Ming Ho; Thomas Tsang; Su-Vui Lo; Daniel K.W. Chu; Edward S. K. Ma; J. S. Malik Peiris
Steven Riley and colleagues analyze a community cohort study from the 2009 (H1N1) influenza pandemic in Hong Kong, and found that more children than adults were infected with H1N1, but children were less likely to progress to severe disease than adults.
Proceedings of the Royal Society of London B: Biological Sciences | 2014
Jonathan M. Read; Justin Lessler; Steven Riley; Shuying Wang; Li Jiu Tan; Kin On Kwok; Yi Guan; Chao Qiang Jiang; Derek A. T. Cummings
A dense population, global connectivity and frequent human–animal interaction give southern China an important role in the spread and emergence of infectious disease. However, patterns of person-to-person contact relevant to the spread of directly transmitted infections such as influenza remain poorly quantified in the region. We conducted a household-based survey of travel and contact patterns among urban and rural populations of Guangdong, China. We measured the character and distance from home of social encounters made by 1821 individuals. Most individuals reported 5–10 h of contact with around 10 individuals each day; however, both distributions have long tails. The distribution of distance from home at which contacts were made is similar: most were within a kilometre of the participants home, while some occurred further than 500 km away. Compared with younger individuals, older individuals made fewer contacts which tended to be closer to home. There was strong assortativity in age-based contact rates. We found no difference between the total number or duration of contacts between urban and rural participants, but urban participants tended to make contacts closer to home. These results can improve mathematical models of infectious disease emergence, spread and control in southern China and throughout the region.
PLOS Pathogens | 2014
Adam J. Kucharski; Kin On Kwok; Vivian W. I. Wei; Benjamin J. Cowling; Jonathan M. Read; Justin Lessler; Derek A. T. Cummings; Steven Riley
Variability in the risk of transmission for respiratory pathogens can result from several factors, including the intrinsic properties of the pathogen, the immune state of the host and the hosts behaviour. It has been proposed that self-reported social mixing patterns can explain the behavioural component of this variability, with simulated intervention studies based on these data used routinely to inform public health policy. However, in the absence of robust studies with biological endpoints for individuals, it is unclear how age and social behaviour contribute to infection risk. To examine how the structure and nature of social contacts influenced infection risk over the course of a single epidemic, we designed a flexible disease modelling framework: the population was divided into a series of increasingly detailed age and social contact classes, with the transmissibility of each age-contact class determined by the average contacts of that class. Fitting the models to serologically confirmed infection data from the 2009 Hong Kong influenza A/H1N1p pandemic, we found that an individuals risk of infection was influenced strongly by the average reported social mixing behaviour of their age group, rather than by their personal reported contacts. We also identified the resolution of social mixing that shaped transmission: epidemic dynamics were driven by intense contacts between children, a post-childhood drop in risky contacts and a subsequent rise in contacts for individuals aged 35–50. Our results demonstrate that self-reported social contact surveys can account for age-associated heterogeneity in the transmission of a respiratory pathogen in humans, and show robustly how these individual-level behaviours manifest themselves through assortative age groups. Our results suggest it is possible to profile the social structure of different populations and to use these aggregated data to predict their inherent transmission potential.
PLOS Pathogens | 2014
Kin On Kwok; Benjamin J. Cowling; Vivian W. I. Wei; Kendra M. Wu; Jonathan M. Read; Justin Lessler; Derek A. T. Cummings; J. S. Malik Peiris; Steven Riley
The interaction of human social behaviour and transmission is an intriguing aspect of the life cycle of respiratory viral infections. Although age-specific mixing patterns are often assumed to be the key drivers of the age-specific heterogeneity in transmission, the association between social contacts and biologically confirmed infection has not previously been tested at the individual level. We administered a questionnaire to participants in a longitudinal cohort survey of influenza in which infection was defined by longitudinal paired serology. Using a variety of statistical approaches, we found overwhelming support for the inclusion of individual age in addition to contact variables when explaining odds of infection: the best model not including age explained only 15.7% of the deviance, whereas the best model with age explained 23.6%. However, within age groups, we did observe an association between contacts, locations and infection: median numbers of contacts (or locations) reported by those infected were higher than those from the uninfected group in every age group other than the youngest. Further, we found some support for the retention of location and contact variables in addition to age in our regression models, with excess odds of infection of approximately 10% per additional 10 contacts or one location. These results suggest that, although the relationship between age and incidence of respiratory infection at the level of the individual is not driven by self-reported social contacts, risk within an age group may be.
Proceedings of the Royal Society of London B: Biological Sciences | 2007
Kin On Kwok; Gabriel M. Leung; Wai Yee Lam; Steven Riley
Two factors dominated the epidemiology of severe acute respiratory syndrome (SARS) during the 2002–2003 global outbreak, namely super-spreading events (SSE) and hospital infections. Although both factors were important during the first and the largest hospital outbreak in Hong Kong, the relative importance of different routes of infection has not yet been quantified. We estimated the parameters of a novel mathematical model of hospital infection using SARS episode data. These estimates described levels of transmission between the index super-spreader, staff and patients, and were used to compare three plausible hypotheses. The broadest of the supported hypotheses ascribes the initial surge in cases to a single super-spreading individual and suggests that the per capita risk of infection to patients increased approximately one month after the start of the outbreak. Our estimate for the number of cases caused by the SSE is substantially lower than the previously reported values, which were mostly based on self-reported exposure information. This discrepancy suggests that the early identification of the index case as a super-spreader might have led to biased contact tracing, resulting in too few cases being attributed to staff-to-staff transmission. We propose that in future outbreaks of SARS or other directly transmissible respiratory pathogens, simple mathematical models could be used to validate preliminary conclusions concerning the relative importance of different routes of transmission with important implications for infection control.
Influenza and Other Respiratory Viruses | 2016
Shaun Truelove; Huachen Zhu; Justin Lessler; Steven Riley; Jonathan M. Read; Shuying Wang; Kin On Kwok; Yi Guan; Chao Qiang Jiang; Derek A. T. Cummings
Serum antibody to influenza can be used to identify past exposure and measure current immune status. The two most common methods for measuring this are the hemagglutination inhibition assay (HI) and the viral neutralization assay (NT), which have not been systematically compared for a large number of influenza viruses.
PLOS ONE | 2011
Kin On Kwok; Gabriel M. Leung; Steven Riley
Background The key epidemiological difference between pandemic and seasonal influenza is that the population is largely susceptible during a pandemic, whereas, during non-pandemic seasons a level of immunity exists. The population-level efficacy of household-based mitigation strategies depends on the proportion of infections that occur within households. In general, mitigation measures such as isolation and quarantine are more effective at the population level if the proportion of household transmission is low. Methods/Results We calculated the proportion of infections within households during pandemic years compared with non-pandemic years using a deterministic model of household transmission in which all combinations of household size and individual infection states were enumerated explicitly. We found that the proportion of infections that occur within households was only partially influenced by the hazard h of infection within household relative to the hazard of infection outside the household, especially for small basic reproductive numbers. During pandemics, the number of within-household infections was lower than one might expect for a given because many of the susceptible individuals were infected from the community and the number of susceptible individuals within household was thus depleted rapidly. In addition, we found that for the value of at which 30% of infections occur within households during non-pandemic years, a similar 31% of infections occur within households during pandemic years. Interpretation We suggest that a trade off between the community force of infection and the number of susceptible individuals in a household explains an apparent invariance in the proportion of infections that occur in households in our model. During a pandemic, although there are more susceptible individuals in a household, the community force of infection is very high. However, during non-pandemic years, the force of infection is much lower but there are fewer susceptible individuals within the household.
BMC Infectious Diseases | 2017
Kin On Kwok; Steven Riley; Ranawaka A.P.M. Perera; Vivian W. I. Wei; Peng Wu; Lan Wei; Daniel K.W. Chu; Ian G. Barr; J. S. Malik Peiris; Benjamin J. Cowling
BackgroundTwo subtypes of influenza A currently circulate in humans: seasonal H3N2 (sH3N2, emerged in 1968) and pandemic H1N1 (pH1N1, emerged in 2009). While the epidemiological characteristics of the initial wave of pH1N1 have been studied in detail, less is known about its infection dynamics during subsequent waves or its severity relative to sH3N2. Even prior to 2009, few data was available to estimate the risk of severe outcomes following infection with one circulating influenza strain relative to another.MethodsWe analyzed antibodies in quadruples of sera from individuals in Hong Kong collected between July 2009 and December 2011, a period that included three distinct influenza virus epidemics. We estimated infection incidence using these assay data and then estimated rates of severe outcomes per infection using population-wide clinical data.ResultsCumulative incidence of infection was high among children in the first epidemic of pH1N1. There was a change towards the older age group in the age distribution of infections for pH1N1 from the first to the second epidemic, with the age distribution of the second epidemic of pH1N1 more similar to that of sH3N2. We found no serological evidence that individuals were infected in both waves of pH1N1. The risks of excess mortality conditional on infection were higher for sH3N2 than for pH1N1, with age-standardized risk ratios of 2.6 [95% CI: 1.8, 3.7] for all causes and 1.5 [95% CI: 1.0, 2.1] for respiratory causes throughout the study period.ConclusionsOverall increase in clinical incidence of pH1N1 and higher rates of severity in older adults in post pandemic waves were in line with an age-shift in infection towards the older age groups. The absence of repeated infection is good evidence that waning immunity did not cause the second wave. Despite circulating in humans since 1968, sH3N2 is substantially more severe per infection than the pH1N1 strain. Infection-based estimates of individual-level severity have a role in assessing emerging strains; updating seasonal vaccine components; and optimizing of vaccination programs.
Journal of the Royal Society Interface | 2018
Kin On Kwok; Ben Cowling; Vivian W. I. Wei; Steven Riley; Jonathan M. Read
Patterns of social contact between individuals are important for the transmission of many pathogens and shaping patterns of immunity at the population scale. To refine our understanding of how human social behaviour may change over time, we conducted a longitudinal study of Hong Kong residents. We recorded the social contact patterns for 1450 individuals, up to four times each between May 2012 and September 2013. We found individuals made contact with an average of 12.5 people within 2.9 geographical locations, and spent an average estimated total duration of 9.1 h in contact with others during a day. Distributions of the number of contacts and locations in which contacts were made were not significantly different between study waves. Encounters were assortative by age, and the age mixing pattern was broadly consistent across study waves. Fitting regression models, we examined the association of contact rates (number of contacts, total duration of contact, number of locations) with covariates and calculated the inter- and intra-participant variation in contact rates. Participant age was significantly associated with the number of contacts made, the total duration of contact and the number of locations in which contact occurred, with children and parental-age adults having the highest rates of contact. The number of contacts and contact duration increased with the number of contact locations. Intra-individual variation in contact rate was consistently greater than inter-individual variation. Despite substantial individual-level variation, remarkable consistency was observed in contact mixing at the population scale. This suggests that aggregate measures of mixing behaviour derived from cross-sectional information may be appropriate for population-scale modelling purposes, and that if more detailed models of social interactions are required for improved public health modelling, further studies are needed to understand the social processes driving intra-individual variation.
Epidemics | 2017
Hsiang-Yu Yuan; Marc Baguelin; Kin On Kwok; Nimalan Arinaminpathy; Edwin van Leeuwen; Steven Riley
Highlights • The disease model with stratified immunity improves the accuracy on influenza epidemic reconstruction.• Antibody boosting in children is greater than adults during influenza outbreak.• Age-specific mixing pattern and the relative infectivity of children to adults are the key drivers of infection heterogeneity.