Kiran Nagothu
University of Arkansas for Medical Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kiran Nagothu.
Kidney International | 2009
Shenyang Li; Kiran Nagothu; Varsha G. Desai; Taewon Lee; William S. Branham; Carrie L. Moland; Judit Megyesi; Mark D. Crew; Didier Portilla
Our previous studies suggest that peroxisome proliferator-activated receptor-alpha (PPARalpha) plays a critical role in regulating fatty acid beta-oxidation in kidney tissue and this directly correlated with preservation of kidney morphology and function during acute kidney injury. To further study this, we generated transgenic mice expressing PPARalpha in the proximal tubule under the control of the promoter of KAP2 (kidney androgen-regulated protein 2). Segment-specific upregulation of PPARalpha expression by testosterone treatment of female transgenic mice improved kidney function during cisplatin or ischemia-reperfusion-induced acute kidney injury. Ischemia-reperfusion injury or treatment with cisplatin in wild-type mice caused inhibition of fatty-acid oxidation, reduction of mitochondrial genes of oxidative phosphorylation, mitochondrial DNA, fatty-acid metabolism, and the tricarboxylic acid cycle. Similar injury in testosterone-treated transgenic mice resulted in amelioration of these effects. Similarly, there were increases in the levels of 4-hydroxy-2-hexenal-derived lipid peroxidation products in wild-type mice, which were also reduced in the transgenic mice. Similarly, necrosis of the S3 segment was reduced in the two injury models in transgenic mice compared to wild type. Our results suggest proximal tubule PPARalpha activity serves as a metabolic sensor. Its increased expression without the use of an exogenous PPARalpha ligand in the transgenic mice is sufficient to protect kidney function and morphology, and to prevent abnormalities in lipid metabolism associated with acute kidney injury.
American Journal of Physiology-renal Physiology | 2012
Shenyang Li; Kiran Nagothu; Gouri Ranganathan; Syed M. Ali; Brian Shank; Neriman Gokden; Srinivas Ayyadevara; Judit Megyesi; Sumant S. Chugh; Sander Kersten; Didier Portilla
Peroxisome proliferator-activated receptor-α (PPARα) activation attenuates cisplatin (CP)-mediated acute kidney injury by increasing fatty acid oxidation, but mechanisms leading to reduced renal triglyceride (TG) accumulation could also contribute. Here, we investigated the effects of PPARα and CP on expression and enzyme activity of kidney lipoprotein lipase (LPL) as well as on expression of angiopoietin protein-like 4 (Angptl4), glycosylphosphatidylinositol-anchored-HDL-binding protein (GPIHBP1), and lipase maturation factor 1 (Lmf1), which are recognized as important proteins that modulate LPL activity. CP caused a 40% reduction in epididymal white adipose tissue (WAT) mass, with a reduction of LPL expression and activity. CP also reduced kidney LPL expression and activity. Angptl4 mRNA levels were increased by ninefold in liver and kidney tissue and by twofold in adipose tissue of CP-treated mice. Western blots of two-dimensional gel electrophoresis identified increased expression of a neutral pI Angptl4 protein in kidney tissue of CP-treated mice. Immunolocalization studies showed reduced staining of LPL and increased staining of Angptl4 primarily in proximal tubules of CP-treated mice. CP also increased TG accumulation in kidney tissue, which was ameliorated by PPARα ligand. In summary, a PPARα ligand ameliorates CP-mediated nephrotoxicity by increasing LPL activity via increased expression of GPHBP1 and Lmf1 and by reducing expression of Angptl4 protein in the proximal tubule.
Kidney International | 2009
Shenyang Li; Kiran Nagothu; Varsha G. Desai; Taewon Lee; William S. Branham; Carrie L. Moland; Judit Megyesi; Mark D. Crew; Didier Portilla
Our previous studies suggest that peroxisome proliferator-activated receptor-alpha (PPARalpha) plays a critical role in regulating fatty acid beta-oxidation in kidney tissue and this directly correlated with preservation of kidney morphology and function during acute kidney injury. To further study this, we generated transgenic mice expressing PPARalpha in the proximal tubule under the control of the promoter of KAP2 (kidney androgen-regulated protein 2). Segment-specific upregulation of PPARalpha expression by testosterone treatment of female transgenic mice improved kidney function during cisplatin or ischemia-reperfusion-induced acute kidney injury. Ischemia-reperfusion injury or treatment with cisplatin in wild-type mice caused inhibition of fatty-acid oxidation, reduction of mitochondrial genes of oxidative phosphorylation, mitochondrial DNA, fatty-acid metabolism, and the tricarboxylic acid cycle. Similar injury in testosterone-treated transgenic mice resulted in amelioration of these effects. Similarly, there were increases in the levels of 4-hydroxy-2-hexenal-derived lipid peroxidation products in wild-type mice, which were also reduced in the transgenic mice. Similarly, necrosis of the S3 segment was reduced in the two injury models in transgenic mice compared to wild type. Our results suggest proximal tubule PPARalpha activity serves as a metabolic sensor. Its increased expression without the use of an exogenous PPARalpha ligand in the transgenic mice is sufficient to protect kidney function and morphology, and to prevent abnormalities in lipid metabolism associated with acute kidney injury.
Kidney International | 2009
Shenyang Li; Kiran Nagothu; Varsha G. Desai; Taewon Lee; William S. Branham; Carrie L. Moland; Judit Megyesi; Mark D. Crew; Didier Portilla
Our previous studies suggest that peroxisome proliferator-activated receptor-alpha (PPARalpha) plays a critical role in regulating fatty acid beta-oxidation in kidney tissue and this directly correlated with preservation of kidney morphology and function during acute kidney injury. To further study this, we generated transgenic mice expressing PPARalpha in the proximal tubule under the control of the promoter of KAP2 (kidney androgen-regulated protein 2). Segment-specific upregulation of PPARalpha expression by testosterone treatment of female transgenic mice improved kidney function during cisplatin or ischemia-reperfusion-induced acute kidney injury. Ischemia-reperfusion injury or treatment with cisplatin in wild-type mice caused inhibition of fatty-acid oxidation, reduction of mitochondrial genes of oxidative phosphorylation, mitochondrial DNA, fatty-acid metabolism, and the tricarboxylic acid cycle. Similar injury in testosterone-treated transgenic mice resulted in amelioration of these effects. Similarly, there were increases in the levels of 4-hydroxy-2-hexenal-derived lipid peroxidation products in wild-type mice, which were also reduced in the transgenic mice. Similarly, necrosis of the S3 segment was reduced in the two injury models in transgenic mice compared to wild type. Our results suggest proximal tubule PPARalpha activity serves as a metabolic sensor. Its increased expression without the use of an exogenous PPARalpha ligand in the transgenic mice is sufficient to protect kidney function and morphology, and to prevent abnormalities in lipid metabolism associated with acute kidney injury.
Kidney International | 2009
Shenyang Li; Kiran Nagothu; Varsha G. Desai; Taewon Lee; William S. Branham; Carrie L. Moland; Judit Megyesi; Mark D. Crew; Didier Portilla
Our previous studies suggest that peroxisome proliferator-activated receptor-alpha (PPARalpha) plays a critical role in regulating fatty acid beta-oxidation in kidney tissue and this directly correlated with preservation of kidney morphology and function during acute kidney injury. To further study this, we generated transgenic mice expressing PPARalpha in the proximal tubule under the control of the promoter of KAP2 (kidney androgen-regulated protein 2). Segment-specific upregulation of PPARalpha expression by testosterone treatment of female transgenic mice improved kidney function during cisplatin or ischemia-reperfusion-induced acute kidney injury. Ischemia-reperfusion injury or treatment with cisplatin in wild-type mice caused inhibition of fatty-acid oxidation, reduction of mitochondrial genes of oxidative phosphorylation, mitochondrial DNA, fatty-acid metabolism, and the tricarboxylic acid cycle. Similar injury in testosterone-treated transgenic mice resulted in amelioration of these effects. Similarly, there were increases in the levels of 4-hydroxy-2-hexenal-derived lipid peroxidation products in wild-type mice, which were also reduced in the transgenic mice. Similarly, necrosis of the S3 segment was reduced in the two injury models in transgenic mice compared to wild type. Our results suggest proximal tubule PPARalpha activity serves as a metabolic sensor. Its increased expression without the use of an exogenous PPARalpha ligand in the transgenic mice is sufficient to protect kidney function and morphology, and to prevent abnormalities in lipid metabolism associated with acute kidney injury.
Kidney International | 2008
Didier Portilla; Catherine L. Dent; T. Sugaya; Kiran Nagothu; I. Kundi; Page C. Moore; Eisei Noiri; Prasad Devarajan
Kidney International | 2006
Didier Portilla; Shenyang Li; Kiran Nagothu; Judit Megyesi; Brigitte Kaissling; L. Schnackenberg; Robert L. Safirstein; R.D. Beger
Kidney International | 2005
Kiran Nagothu; Renu Bhatt; Gur P. Kaushal; Didier Portilla
Kidney International | 2007
Kousuke Negishi; Eisei Noiri; Takeshi Sugaya; Shenyang Li; Judit Megyesi; Kiran Nagothu; Didier Portilla
Toxicology in Vitro | 2006
Grant W. Wangila; Kiran Nagothu; Richard Steward; Renu Bhatt; Peter Abeta Iyere; William M. Willingham; John R. J. Sorenson; Sudhir V. Shah; Didier Portilla