Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shenyang Li is active.

Publication


Featured researches published by Shenyang Li.


Science Translational Medicine | 2012

MicroRNA 21 promotes fibrosis of the kidney by silencing metabolic pathways

B. Nelson Chau; Cuiyan Xin; Jochen C. Hartner; Shuyu Ren; Ana P. Castano; Geoffrey Linn; Jian Li; Phong T. Tran; Vivek Kaimal; Xinqiang Huang; Aaron N. Chang; Shenyang Li; Aarti Kalra; Monica Grafals; Didier Portilla; Deidre A. MacKenna; Stuart H. Orkin; Jeremy S. Duffield

MicroRNA-21 contributes to fibrosis in the kidney by posttranscriptionally regulating lipid metabolism genes. Defeating Fibrosis Although small—just 22 nucleotides in length—microRNA-21 (miR-21) packs a mighty punch, posttranscriptionally regulating the expression of many genes. Furthermore, miR-21 dysregulation has been linked to cardiac disease and cancer. Now, Chau et al. show that dysregulated miR-21 also contributes to kidney fibrosis, an inappropriate wound-healing response that promotes organ failure. The authors first identified miRNAs that were up-regulated in two mouse models of kidney injury. On the basis of preliminary analyses, Chau et al. focused on miR-21. In mice, miR-21 is up-regulated in the kidney soon after injury, before fibrosis appears. Moreover, miR-21 is up-regulated in human kidneys from patients with problems such as acute kidney injury. Although mice that lack miR-21 are healthy and display relatively normal gene expression in the kidney, after injury, a derepressed set of miR-21 target mRNAs becomes apparent, and they develop much less fibrosis than their littermates that express miR-21. In normal mice, inhibition of miR-21 with complementary oligonucleotides likewise reduces kidney fibrosis after injury. To understand how miR-21 amplifies kidney fibrosis, the authors examined kidney gene expression profiles in mice with and without miR-21 after kidney injury. About 700 genes were derepressed in kidneys from mice without miR-21; surprisingly, genes involved in metabolic pathways—particularly involving fatty acid and lipid oxidation—were among the up-regulated genes, whereas those involved in immune or cell proliferation pathways were not. One derepressed gene, encoding peroxisome proliferator–activated receptor α (PPARα), a regulator of lipid metabolism, is a direct target of miR-21. Overexpression of PPARα in the kidney during injury inhibited fibrosis in mice; conversely, in mice that lacked PPARα, inhibition of miR-21 no longer protected against kidney fibrosis. The finding that miR-21 is a major player in kidney fibrosis suggests that drugs that inhibit miR-21, like the complementary oligonucleotides used in this study, might prove to be useful therapies in humans. Scarring of the kidney is a major public health concern, directly promoting loss of kidney function. To understand the role of microRNA (miRNA) in the progression of kidney scarring in response to injury, we investigated changes in miRNA expression in two kidney fibrosis models and identified 24 commonly up-regulated miRNAs. Among them, miR-21 was highly elevated in both animal models and in human transplanted kidneys with nephropathy. Deletion of miR-21 in mice resulted in no overt abnormality. However, miR-21−/− mice suffered far less interstitial fibrosis in response to kidney injury, a phenotype duplicated in wild-type mice treated with anti–miR-21 oligonucleotides. Global derepression of miR-21 target mRNAs was readily detectable in miR-21−/− kidneys after injury. Analysis of gene expression profiles up-regulated in the absence of miR-21 identified groups of genes involved in metabolic pathways, including the lipid metabolism pathway regulated by peroxisome proliferator–activated receptor-α (Pparα), a direct miR-21 target. Overexpression of Pparα prevented ureteral obstruction–induced injury and fibrosis. Pparα deficiency abrogated the antifibrotic effect of anti–miR-21 oligonucleotides. miR-21 also regulated the redox metabolic pathway. The mitochondrial inhibitor of reactive oxygen species generation Mpv17l was repressed by miR-21, correlating closely with enhanced oxidative kidney damage. These studies demonstrate that miR-21 contributes to fibrogenesis and epithelial injury in the kidney in two mouse models and is a candidate target for antifibrotic therapies.


Kidney International | 2009

Transgenic expression of proximal tubule peroxisome proliferator–activated receptor-α in mice confers protection during acute kidney injury

Shenyang Li; Kiran Nagothu; Varsha G. Desai; Taewon Lee; William S. Branham; Carrie L. Moland; Judit Megyesi; Mark D. Crew; Didier Portilla

Our previous studies suggest that peroxisome proliferator-activated receptor-alpha (PPARalpha) plays a critical role in regulating fatty acid beta-oxidation in kidney tissue and this directly correlated with preservation of kidney morphology and function during acute kidney injury. To further study this, we generated transgenic mice expressing PPARalpha in the proximal tubule under the control of the promoter of KAP2 (kidney androgen-regulated protein 2). Segment-specific upregulation of PPARalpha expression by testosterone treatment of female transgenic mice improved kidney function during cisplatin or ischemia-reperfusion-induced acute kidney injury. Ischemia-reperfusion injury or treatment with cisplatin in wild-type mice caused inhibition of fatty-acid oxidation, reduction of mitochondrial genes of oxidative phosphorylation, mitochondrial DNA, fatty-acid metabolism, and the tricarboxylic acid cycle. Similar injury in testosterone-treated transgenic mice resulted in amelioration of these effects. Similarly, there were increases in the levels of 4-hydroxy-2-hexenal-derived lipid peroxidation products in wild-type mice, which were also reduced in the transgenic mice. Similarly, necrosis of the S3 segment was reduced in the two injury models in transgenic mice compared to wild type. Our results suggest proximal tubule PPARalpha activity serves as a metabolic sensor. Its increased expression without the use of an exogenous PPARalpha ligand in the transgenic mice is sufficient to protect kidney function and morphology, and to prevent abnormalities in lipid metabolism associated with acute kidney injury.


American Journal of Physiology-renal Physiology | 2013

Proximal tubule PPARα attenuates renal fibrosis and inflammation caused by unilateral ureteral obstruction.

Shenyang Li; Nithya Mariappan; Judit Megyesi; Brian Shank; Krishnaswamy Kannan; Sue Theus; Peter M. Price; Jeremy S. Duffield; Didier Portilla

We examined the effects of increased expression of proximal tubule peroxisome proliferator-activated receptor (PPAR)α in a mouse model of renal fibrosis. After 5 days of unilateral ureteral obstruction (UUO), PPARα expression was significantly reduced in kidney tissue of wild-type mice but this downregulation was attenuated in proximal tubules of PPARα transgenic (Tg) mice. When compared with wild-type mice subjected to UUO, PPARα Tg mice had reduced mRNA and protein expression of proximal tubule transforming growth factor (TGF)-β1, with reduced production of extracellular matrix proteins including collagen 1, fibronectin, α-smooth muscle actin, and reduced tubulointerstitial fibrosis. UUO-mediated increased expression of microRNA 21 in kidney tissue was also reduced in PPARα Tg mice. Overexpression of PPARα in cultured proximal tubular cells by adenoviral transduction reduced aristolochic acid-mediated increased production of TGF-β, demonstrating PPARα signaling reduces epithelial TGF-β production. Flow cytometry studies of dissociated whole kidneys demonstrated reduced macrophage infiltration to kidney tissue in PPARα Tg mice after UUO. Increased expression of proinflammatory cytokines including IL-1β, IL-6, and TNF-α in wild-type mice was also significantly reduced in kidney tissue of PPARα Tg mice. In contrast, the expression of anti-inflammatory cytokines IL-10 and arginase-1 was significantly increased in kidney tissue of PPARα Tg mice when compared with wild-type mice subjected to UUO. Our studies demonstrate several mechanisms by which preserved expression of proximal tubule PPARα reduces tubulointerstitial fibrosis and inflammation associated with obstructive uropathy.


American Journal of Physiology-renal Physiology | 2015

Increased expression of p21WAF1/CIP1 in kidney proximal tubules mediates fibrosis

Judit Megyesi; Adel Tarcsafalvi; Shenyang Li; Rawad Hodeify; Nang San Hti Lar Seng; Didier Portilla; Peter M. Price

Tissue fibrosis is a major cause of death in developed countries. It commonly occurs after either acute or chronic injury and affects diverse organs, including the heart, liver, lung, and kidney. Using the renal ablation model of chronic kidney disease, we previously found that the development of progressive renal fibrosis was dependent on p21(WAF1/Cip1) expression; the genetic knockout of the p21 gene greatly alleviated this disease. In the present study, we expanded on this observation and report that fibrosis induced by two different acute injuries to the kidney is also dependent on p21. In addition, when p21 expression was restricted only to the proximal tubule, fibrosis after injury was induced in the whole organ. One molecular fibrogenic switch we describe is transforming growth factor-β induction, which occurred in vivo and in cultured kidney cells exposed to adenovirus expressing p21. Our data suggests that fibrosis is p21 dependent and that preventing p21 induction after stress could be a novel therapeutic target.


American Journal of Physiology-renal Physiology | 2012

Reduced kidney lipoprotein lipase and renal tubule triglyceride accumulation in cisplatin-mediated acute kidney injury

Shenyang Li; Kiran Nagothu; Gouri Ranganathan; Syed M. Ali; Brian Shank; Neriman Gokden; Srinivas Ayyadevara; Judit Megyesi; Sumant S. Chugh; Sander Kersten; Didier Portilla

Peroxisome proliferator-activated receptor-α (PPARα) activation attenuates cisplatin (CP)-mediated acute kidney injury by increasing fatty acid oxidation, but mechanisms leading to reduced renal triglyceride (TG) accumulation could also contribute. Here, we investigated the effects of PPARα and CP on expression and enzyme activity of kidney lipoprotein lipase (LPL) as well as on expression of angiopoietin protein-like 4 (Angptl4), glycosylphosphatidylinositol-anchored-HDL-binding protein (GPIHBP1), and lipase maturation factor 1 (Lmf1), which are recognized as important proteins that modulate LPL activity. CP caused a 40% reduction in epididymal white adipose tissue (WAT) mass, with a reduction of LPL expression and activity. CP also reduced kidney LPL expression and activity. Angptl4 mRNA levels were increased by ninefold in liver and kidney tissue and by twofold in adipose tissue of CP-treated mice. Western blots of two-dimensional gel electrophoresis identified increased expression of a neutral pI Angptl4 protein in kidney tissue of CP-treated mice. Immunolocalization studies showed reduced staining of LPL and increased staining of Angptl4 primarily in proximal tubules of CP-treated mice. CP also increased TG accumulation in kidney tissue, which was ameliorated by PPARα ligand. In summary, a PPARα ligand ameliorates CP-mediated nephrotoxicity by increasing LPL activity via increased expression of GPHBP1 and Lmf1 and by reducing expression of Angptl4 protein in the proximal tubule.


Kidney International | 2009

Increased Proximal tubule PPARα in KAP2-PPARα Tg mice confers protection during acute kidney injury

Shenyang Li; Kiran Nagothu; Varsha G. Desai; Taewon Lee; William S. Branham; Carrie L. Moland; Judit Megyesi; Mark D. Crew; Didier Portilla

Our previous studies suggest that peroxisome proliferator-activated receptor-alpha (PPARalpha) plays a critical role in regulating fatty acid beta-oxidation in kidney tissue and this directly correlated with preservation of kidney morphology and function during acute kidney injury. To further study this, we generated transgenic mice expressing PPARalpha in the proximal tubule under the control of the promoter of KAP2 (kidney androgen-regulated protein 2). Segment-specific upregulation of PPARalpha expression by testosterone treatment of female transgenic mice improved kidney function during cisplatin or ischemia-reperfusion-induced acute kidney injury. Ischemia-reperfusion injury or treatment with cisplatin in wild-type mice caused inhibition of fatty-acid oxidation, reduction of mitochondrial genes of oxidative phosphorylation, mitochondrial DNA, fatty-acid metabolism, and the tricarboxylic acid cycle. Similar injury in testosterone-treated transgenic mice resulted in amelioration of these effects. Similarly, there were increases in the levels of 4-hydroxy-2-hexenal-derived lipid peroxidation products in wild-type mice, which were also reduced in the transgenic mice. Similarly, necrosis of the S3 segment was reduced in the two injury models in transgenic mice compared to wild type. Our results suggest proximal tubule PPARalpha activity serves as a metabolic sensor. Its increased expression without the use of an exogenous PPARalpha ligand in the transgenic mice is sufficient to protect kidney function and morphology, and to prevent abnormalities in lipid metabolism associated with acute kidney injury.


Kidney International | 2009

Original ArticleTransgenic expression of proximal tubule peroxisome proliferator–activated receptor-α in mice confers protection during acute kidney injury

Shenyang Li; Kiran Nagothu; Varsha G. Desai; Taewon Lee; William S. Branham; Carrie L. Moland; Judit Megyesi; Mark D. Crew; Didier Portilla

Our previous studies suggest that peroxisome proliferator-activated receptor-alpha (PPARalpha) plays a critical role in regulating fatty acid beta-oxidation in kidney tissue and this directly correlated with preservation of kidney morphology and function during acute kidney injury. To further study this, we generated transgenic mice expressing PPARalpha in the proximal tubule under the control of the promoter of KAP2 (kidney androgen-regulated protein 2). Segment-specific upregulation of PPARalpha expression by testosterone treatment of female transgenic mice improved kidney function during cisplatin or ischemia-reperfusion-induced acute kidney injury. Ischemia-reperfusion injury or treatment with cisplatin in wild-type mice caused inhibition of fatty-acid oxidation, reduction of mitochondrial genes of oxidative phosphorylation, mitochondrial DNA, fatty-acid metabolism, and the tricarboxylic acid cycle. Similar injury in testosterone-treated transgenic mice resulted in amelioration of these effects. Similarly, there were increases in the levels of 4-hydroxy-2-hexenal-derived lipid peroxidation products in wild-type mice, which were also reduced in the transgenic mice. Similarly, necrosis of the S3 segment was reduced in the two injury models in transgenic mice compared to wild type. Our results suggest proximal tubule PPARalpha activity serves as a metabolic sensor. Its increased expression without the use of an exogenous PPARalpha ligand in the transgenic mice is sufficient to protect kidney function and morphology, and to prevent abnormalities in lipid metabolism associated with acute kidney injury.


Kidney International | 2009

Transgenic expression of proximal tubule peroxisome proliferator|[ndash]|activated receptor-|[alpha]| in mice confers protection during acute kidney injury

Shenyang Li; Kiran Nagothu; Varsha G. Desai; Taewon Lee; William S. Branham; Carrie L. Moland; Judit Megyesi; Mark D. Crew; Didier Portilla

Our previous studies suggest that peroxisome proliferator-activated receptor-alpha (PPARalpha) plays a critical role in regulating fatty acid beta-oxidation in kidney tissue and this directly correlated with preservation of kidney morphology and function during acute kidney injury. To further study this, we generated transgenic mice expressing PPARalpha in the proximal tubule under the control of the promoter of KAP2 (kidney androgen-regulated protein 2). Segment-specific upregulation of PPARalpha expression by testosterone treatment of female transgenic mice improved kidney function during cisplatin or ischemia-reperfusion-induced acute kidney injury. Ischemia-reperfusion injury or treatment with cisplatin in wild-type mice caused inhibition of fatty-acid oxidation, reduction of mitochondrial genes of oxidative phosphorylation, mitochondrial DNA, fatty-acid metabolism, and the tricarboxylic acid cycle. Similar injury in testosterone-treated transgenic mice resulted in amelioration of these effects. Similarly, there were increases in the levels of 4-hydroxy-2-hexenal-derived lipid peroxidation products in wild-type mice, which were also reduced in the transgenic mice. Similarly, necrosis of the S3 segment was reduced in the two injury models in transgenic mice compared to wild type. Our results suggest proximal tubule PPARalpha activity serves as a metabolic sensor. Its increased expression without the use of an exogenous PPARalpha ligand in the transgenic mice is sufficient to protect kidney function and morphology, and to prevent abnormalities in lipid metabolism associated with acute kidney injury.


Kidney International | 2006

Metabolomic study of cisplatin-induced nephrotoxicity

Didier Portilla; Shenyang Li; Kiran Nagothu; Judit Megyesi; Brigitte Kaissling; L. Schnackenberg; Robert L. Safirstein; R.D. Beger


American Journal of Physiology-renal Physiology | 2005

Anti-inflammatory effect of fibrate protects from cisplatin-induced ARF

Shenyang Li; Neriman Gokden; Mark D. Okusa; Renu Bhatt; Didier Portilla

Collaboration


Dive into the Shenyang Li's collaboration.

Top Co-Authors

Avatar

Didier Portilla

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Judit Megyesi

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Kiran Nagothu

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Carrie L. Moland

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Mark D. Crew

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Varsha G. Desai

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

William S. Branham

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neriman Gokden

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Peter M. Price

University of Arkansas for Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge