Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kirk T. Ehmsen is active.

Publication


Featured researches published by Kirk T. Ehmsen.


Annual Review of Genetics | 2010

Regulation of Homologous Recombination in Eukaryotes

Wolf Dietrich Heyer; Kirk T. Ehmsen; Jie Liu

Homologous recombination (HR) is required for accurate chromosome segregation during the first meiotic division and constitutes a key repair and tolerance pathway for complex DNA damage, including DNA double-strand breaks, interstrand crosslinks, and DNA gaps. In addition, recombination and replication are inextricably linked, as recombination recovers stalled and broken replication forks, enabling the evolution of larger genomes/replicons. Defects in recombination lead to genomic instability and elevated cancer predisposition, demonstrating a clear cellular need for recombination. However, recombination can also lead to genome rearrangements. Unrestrained recombination causes undesired endpoints (translocation, deletion, inversion) and the accumulation of toxic recombination intermediates. Evidently, HR must be carefully regulated to match specific cellular needs. Here, we review the factors and mechanistic stages of recombination that are subject to regulation and suggest that recombination achieves flexibility and robustness by proceeding through metastable, reversible intermediates.


Nucleic Acids Research | 2008

Saccharomyces cerevisiae Mus81-Mms4 is a catalytic, DNA structure-selective endonuclease

Kirk T. Ehmsen; Wolf Dietrich Heyer

The DNA structure-selective endonuclease Mus81-Mms4/Eme1 is a context-specific recombination factor that supports DNA replication, but is not essential for DSB repair in Saccharomyces cerevisiae. We overexpressed Mus81-Mms4 in S. cerevisiae, purified the heterodimer to apparent homogeneity, and performed a classical enzymological characterization. Kinetic analysis (kcat, KM) demonstrated that Mus81-Mms4 is catalytically active and identified three substrate classes in vitro. Class I substrates reflect low KM (3–7 nM) and high kcat (∼1 min−1) and include the nicked Holliday junction, 3′-flapped and replication fork-like structures. Class II substrates share low KM (1–6 nM) but low kcat (≤0.3 min−1) relative to Class I substrates and include the D-loop and partial Holliday junction. The splayed Y junction defines a class III substrate having high KM (∼30 nM) and low kcat (0.26 min−1). Holliday junctions assembled from oligonucleotides with or without a branch migratable core were negligibly cut in vitro. We found that Mus81 and Mms4 are phosphorylated constitutively and in the presence of the genotoxin MMS. The endogenous complex purified in either modification state is negligibly active on Holliday junctions. Hence, Holliday junction incision activity in vitro cannot be attributed to the Mus81-Mms4 heterodimer in isolation.


Molecular and Cellular Biology | 2012

Distinct Roles of Mus81, Yen1, Slx1-Slx4, and Rad1 Nucleases in the Repair of Replication-Born Double-Strand Breaks by Sister Chromatid Exchange

Sandra Muñoz-Galván; Cristina Tous; Miguel G. Blanco; Erin K. Schwartz; Kirk T. Ehmsen; Stephen C. West; Wolf Dietrich Heyer; Andrés Aguilera

ABSTRACT Most spontaneous DNA double-strand breaks (DSBs) arise during replication and are repaired by homologous recombination (HR) with the sister chromatid. Many proteins participate in HR, but it is often difficult to determine their in vivo functions due to the existence of alternative pathways. Here we take advantage of an in vivo assay to assess repair of a specific replication-born DSB by sister chromatid recombination (SCR). We analyzed the functional relevance of four structure-selective endonucleases (SSEs), Yen1, Mus81-Mms4, Slx1-Slx4, and Rad1, on SCR in Saccharomyces cerevisiae. Physical and genetic analyses showed that ablation of any of these SSEs leads to a specific SCR decrease that is not observed in general HR. Our work suggests that Yen1, Mus81-Mms4, Slx4, and Rad1, but not Slx1, function independently in the cleavage of intercrossed DNA structures to reconstitute broken replication forks via HR with the sister chromatid. These unique effects, which have not been detected in other studies unless double mutant combinations were used, indicate the formation of distinct alternatives for the repair of replication-born DSBs that require specific SSEs.


Molecular and Cellular Biology | 2012

Mus81-Mms4 Functions as a Single Heterodimer To Cleave Nicked Intermediates in Recombinational DNA Repair

Erin K. Schwartz; William Douglass Wright; Kirk T. Ehmsen; James E. Evans; Henning Stahlberg; Wolf Dietrich Heyer

ABSTRACT The formation of crossovers is a fundamental genetic process. The XPF-family endonuclease Mus81-Mms4 (Eme1) contributes significantly to crossing over in eukaryotes. A key question is whether Mus81-Mms4 can process Holliday junctions that contain four uninterrupted strands. Holliday junction cleavage requires the coordination of two active sites, necessitating the assembly of two Mus81-Mms4 heterodimers. Contrary to this expectation, we show that Saccharomyces cerevisiae Mus81-Mms4 exists as a single heterodimer both in solution and when bound to DNA substrates in vitro. Consistently, immunoprecipitation experiments demonstrate that Mus81-Mms4 does not multimerize in vivo. Moreover, chromatin-bound Mus81-Mms4 does not detectably form higher-order multimers. We show that Cdc5 kinase activates Mus81-Mms4 nuclease activity on 3′ flaps and Holliday junctions in vitro but that activation does not induce a preference for Holliday junctions and does not induce multimerization of the Mus81-Mms4 heterodimer. These data support a model in which Mus81-Mms4 cleaves nicked recombination intermediates such as displacement loops (D-loops), nicked Holliday junctions, or 3′ flaps but not intact Holliday junctions with four uninterrupted strands. We infer that Mus81-dependent crossing over occurs in a noncanonical manner that does not involve the coordinated cleavage of classic Holliday junctions.


Critical Reviews in Biochemistry and Molecular Biology | 2011

Presynaptic filament dynamics in homologous recombination and DNA repair

Jie Liu; Kirk T. Ehmsen; Wolf Dietrich Heyer; Scott W. Morrical

Homologous recombination (HR) is an essential genome stability mechanism used for high-fidelity repair of DNA double-strand breaks and for the recovery of stalled or collapsed DNA replication forks. The crucial homology search and DNA strand exchange steps of HR are catalyzed by presynaptic filaments—helical filaments of a recombinase enzyme bound to single-stranded DNA (ssDNA). Presynaptic filaments are fundamentally dynamic structures, the assembly, catalytic turnover, and disassembly of which must be closely coordinated with other elements of the DNA recombination, repair, and replication machinery in order for genome maintenance functions to be effective. Here, we reviewed the major dynamic elements controlling the assembly, activity, and disassembly of presynaptic filaments; some intrinsic such as recombinase ATP-binding and hydrolytic activities, others extrinsic such as ssDNA-binding proteins, mediator proteins, and DNA motor proteins. We examined dynamic behavior on multiple levels, including atomic- and filament-level structural changes associated with ATP binding and hydrolysis as evidenced in crystal structures, as well as subunit binding and dissociation events driven by intrinsic and extrinsic factors. We examined the biochemical properties of recombination proteins from four model systems (T4 phage, Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens), demonstrating how their properties are tailored for the context-specific requirements in these diverse species. We proposed that the presynaptic filament has evolved to rely on multiple external factors for increased multilevel regulation of HR processes in genomes with greater structural and sequence complexity.


Nucleic Acids Research | 2009

A junction branch point adjacent to a DNA backbone nick directs substrate cleavage by Saccharomyces cerevisiae Mus81-Mms4

Kirk T. Ehmsen; Wolf Dietrich Heyer

The DNA structure-selective endonuclease Mus81-Mms4/Eme1 incises a number of nicked joint molecule substrates in vitro. 3′-flaps are an excellent in vitro substrate for Mus81-Mms4/Eme1. Mutants in MUS81 are synthetically lethal with mutations in the 5′-flap endonuclease FEN1/Rad27 in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Considering the possibility for isoenergetic interconversion between 3′- and 5′- flaps, these data are consistent with the hypothesis that Mus81-Mms4/Eme1 acts on 3′-flaps in vivo. FEN1/Rad27 prefers dually flapped substrates and cleaves in a way that allows direct ligation of the resulting nick in the product duplex. Here we test the activity of Mus81-Mms4 on dually flapped substrates and find that in contrast to FEN1/Rad27, Mus81-Mms4 activity is impaired on such substrates, resulting in cleavage products that do not allow direct religation. We conclude that Mus81-Mms4, unlike FEN1/Rad27, does not prefer dually flapped substrates and is unlikely to function as a 3′-flapase counterpart to the 5′-flapase activity of FEN1/Rad27. We further find that joint molecule incision by Mus81-Mms4 occurs in a fashion determined by the branch point, regardless of the position of an upstream duplex end. These findings underscore the significance of a nick adjacent to a branch point for Mus81-Mms4 incision.


Nucleic Acids Research | 2014

The Mus81-Mms4 structure-selective endonuclease requires nicked DNA junctions to undergo conformational changes and bend its DNA substrates for cleavage

Sucheta Mukherjee; William Douglass Wright; Kirk T. Ehmsen; Wolf Dietrich Heyer

Mus81-Mms4/EME1 is a DNA structure-selective endonuclease that cleaves joint DNA molecules that form during homologous recombination in mitotic and meiotic cells. Here, we demonstrate by kinetic analysis using physically tethered DNA substrates that budding yeast Mus81-Mms4 requires inherent rotational flexibility in DNA junctions for optimal catalysis. Förster Resonance Energy Transfer experiments further reveal that recognition of 3′-flap and nicked Holliday junction substrates by Mus81-Mms4 involves induction of a sharp bend with a 100° angle between two duplex DNA arms. In addition, thiol crosslinking of Mus81-Mms4 bound to DNA junctions demonstrates that the heterodimer undergoes a conformational change induced by joint DNA molecules with preferred structural properties. The results from all three approaches suggest a model for catalysis by Mus81-Mms4 in which initial DNA binding is based on minimal structural requirements followed by a rate-limiting conformational transition of the substrate and protein. This leads to a sharply kinked DNA molecule that may fray the DNA four base pairs away from the junction point to position the nuclease for cleavage between the fourth and fifth nucleotide. These data suggest that mutually compatible conformational changes of Mus81-Mms4 and its substrates tailor its incision activity to nicked junction molecules.


PLOS ONE | 2013

A conserved sequence extending motif III of the motor domain in the Snf2-family DNA translocase Rad54 is critical for ATPase activity.

Xiao Ping Zhang; Ryan Janke; James Kingsley; Jerry Luo; Clare L. Fasching; Kirk T. Ehmsen; Wolf Dietrich Heyer

Rad54 is a dsDNA-dependent ATPase that translocates on duplex DNA. Its ATPase function is essential for homologous recombination, a pathway critical for meiotic chromosome segregation, repair of complex DNA damage, and recovery of stalled or broken replication forks. In recombination, Rad54 cooperates with Rad51 protein and is required to dissociate Rad51 from heteroduplex DNA to allow access by DNA polymerases for recombination-associated DNA synthesis. Sequence analysis revealed that Rad54 contains a perfect match to the consensus PIP box sequence, a widely spread PCNA interaction motif. Indeed, Rad54 interacts directly with PCNA, but this interaction is not mediated by the Rad54 PIP box-like sequence. This sequence is located as an extension of motif III of the Rad54 motor domain and is essential for full Rad54 ATPase activity. Mutations in this motif render Rad54 non-functional in vivo and severely compromise its activities in vitro. Further analysis demonstrated that such mutations affect dsDNA binding, consistent with the location of this sequence motif on the surface of the cleft formed by two RecA-like domains, which likely forms the dsDNA binding site of Rad54. Our study identified a novel sequence motif critical for Rad54 function and showed that even perfect matches to the PIP box consensus may not necessarily identify PCNA interaction sites.


Methods of Molecular Biology | 2011

Assays for structure-selective DNA endonucleases.

William Douglass Wright; Kirk T. Ehmsen; Wolf Dietrich Heyer

Structure-selective nucleases perform DNA strand incisions crucial to the repair/resolution of branched DNA molecules arising during DNA replication, recombination, and repair. From a combination of genetics and in vitro nuclease assay studies, we are just beginning to understand how these enzymes recognize their substrates and to identify their in vivo DNA structure targets. By performing nuclease assays on a variety of substrates meant to mimic cellular intermediates, structural features of branched DNA molecules that are important for robust catalysis can be defined. However, since these enzymes often are capable of cleaving a range of DNA structures, caution must be taken not to overemphasize the significance of incision of a certain structure before a careful and detailed kinetic analysis of a variety of DNA substrates with different polarities and structural features has been completed. Here, we provide protocols for the production of a variety of oligo-based DNA joint molecules and their use in endonuclease assays, which can be used to derive the kinetic parameters KM and kcat. Determination of these values for a variety of substrates provides meaningful comparisons that allow inferences to be made regarding in vivo DNA structure target(s).


Molecular and Cellular Biology | 2017

Correction for Muñoz-Galván et al., “Distinct Roles of Mus81, Yen1, Slx1-Slx4, and Rad1 Nucleases in the Repair of Replication-Born Double-Strand Breaks by Sister Chromatid Exchange”

Sandra Muñoz-Galván; Cristina Tous; Miguel G. Blanco; Erin K. Schwartz; Kirk T. Ehmsen; Stephen C. West; Wolf Dietrich Heyer; Andrés Aguilera

Sandra Muñoz-Galván,a Cristina Tous,a Miguel G. Blanco,b Erin K. Schwartz,c Kirk T. Ehmsen,c Stephen C. West,b Wolf-Dietrich Heyer,c and Andrés Aguileraa Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-CSIC, Seville, Spaina; London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, United Kingdomb; and Department of Microbiology, University of California, Davis, California, USAc

Collaboration


Dive into the Kirk T. Ehmsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jie Liu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrés Aguilera

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Cristina Tous

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Sandra Muñoz-Galván

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge