Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William Douglass Wright is active.

Publication


Featured researches published by William Douglass Wright.


Molecular Cell | 2014

Rad54 functions as a heteroduplex DNA pump modulated by its DNA substrates and Rad51 during D loop formation.

William Douglass Wright; Wolf Dietrich Heyer

The displacement loop (D loop) is the product of homology search and DNA strand invasion, constituting a central intermediate in homologous recombination (HR). In eukaryotes, the Rad51 DNA strand exchange protein is assisted in D loop formation by the Rad54 motor protein. Curiously, Rad54 also disrupts D loops. How these opposing activities are coordinated toward productive recombination is unknown. Moreover, a seemingly disparate function of Rad54 is removal of Rad51 from heteroduplex DNA (hDNA) to allow HR-associated DNA synthesis. Here, we uncover features of D loop formation/dissociation dynamics, employing Rad51 filaments formed on ssDNAs that mimic the physiological length and structure of in vivo substrates. The Rad54 motor is activated by Rad51 bound to synapsed DNAs and guided by a ssDNA-binding domain. We present a unified model wherein Rad54 acts as an hDNA pump that drives D loop formation while simultaneously removing Rad51 from hDNA, consolidating both ATP-dependent activities of Rad54 into a single mechanistic step.


Molecular and Cellular Biology | 2012

Mus81-Mms4 Functions as a Single Heterodimer To Cleave Nicked Intermediates in Recombinational DNA Repair

Erin K. Schwartz; William Douglass Wright; Kirk T. Ehmsen; James E. Evans; Henning Stahlberg; Wolf Dietrich Heyer

ABSTRACT The formation of crossovers is a fundamental genetic process. The XPF-family endonuclease Mus81-Mms4 (Eme1) contributes significantly to crossing over in eukaryotes. A key question is whether Mus81-Mms4 can process Holliday junctions that contain four uninterrupted strands. Holliday junction cleavage requires the coordination of two active sites, necessitating the assembly of two Mus81-Mms4 heterodimers. Contrary to this expectation, we show that Saccharomyces cerevisiae Mus81-Mms4 exists as a single heterodimer both in solution and when bound to DNA substrates in vitro. Consistently, immunoprecipitation experiments demonstrate that Mus81-Mms4 does not multimerize in vivo. Moreover, chromatin-bound Mus81-Mms4 does not detectably form higher-order multimers. We show that Cdc5 kinase activates Mus81-Mms4 nuclease activity on 3′ flaps and Holliday junctions in vitro but that activation does not induce a preference for Holliday junctions and does not induce multimerization of the Mus81-Mms4 heterodimer. These data support a model in which Mus81-Mms4 cleaves nicked recombination intermediates such as displacement loops (D-loops), nicked Holliday junctions, or 3′ flaps but not intact Holliday junctions with four uninterrupted strands. We infer that Mus81-dependent crossing over occurs in a noncanonical manner that does not involve the coordinated cleavage of classic Holliday junctions.


Nucleic Acids Research | 2015

RAD54 family translocases counter genotoxic effects of RAD51 in human tumor cells

Jennifer M. Mason; Kritika Dusad; William Douglass Wright; Jennifer Grubb; Brian Budke; Wolf Dietrich Heyer; Philip P. Connell; Ralph R. Weichselbaum; Douglas K. Bishop

The RAD54 family DNA translocases have several biochemical activities. One activity, demonstrated previously for the budding yeast translocases, is ATPase-dependent disruption of RAD51-dsDNA binding. This activity is thought to promote dissociation of RAD51 from heteroduplex DNA following strand exchange during homologous recombination. In addition, previous experiments in budding yeast have shown that the same activity of Rad54 removes Rad51 from undamaged sites on chromosomes; mutants lacking Rad54 accumulate nonrepair-associated complexes that can block growth and lead to chromosome loss. Here, we show that human RAD54 also promotes the dissociation of RAD51 from dsDNA and not ssDNA. We also show that translocase depletion in tumor cell lines leads to the accumulation of RAD51 on chromosomes, forming complexes that are not associated with markers of DNA damage. We further show that combined depletion of RAD54L and RAD54B and/or artificial induction of RAD51 overexpression blocks replication and promotes chromosome segregation defects. These results support a model in which RAD54L and RAD54B counteract genome-destabilizing effects of direct binding of RAD51 to dsDNA in human tumor cells. Thus, in addition to having genome-stabilizing DNA repair activity, human RAD51 has genome-destabilizing activity when expressed at high levels, as is the case in many human tumors.


eLife | 2017

Srs2 promotes synthesis-dependent strand annealing by disrupting DNA polymerase δ-extending D-loops

Jie Liu; Christopher Ede; William Douglass Wright; Steven K Gore; Shirin S Jenkins; Bret D Freudenthal; M. Todd Washington; Xavier Veaute; Wolf Dietrich Heyer

Synthesis-dependent strand annealing (SDSA) is the preferred mode of homologous recombination in somatic cells leading to an obligatory non-crossover outcome, thus avoiding the potential for chromosomal rearrangements and loss of heterozygosity. Genetic analysis identified the Srs2 helicase as a prime candidate to promote SDSA. Here, we demonstrate that Srs2 disrupts D-loops in an ATP-dependent fashion and with a distinct polarity. Specifically, we partly reconstitute the SDSA pathway using Rad51, Rad54, RPA, RFC, DNA Polymerase δ with different forms of PCNA. Consistent with genetic data showing the requirement for SUMO and PCNA binding for the SDSA role of Srs2, Srs2 displays a slight but significant preference to disrupt extending D-loops over unextended D-loops when SUMOylated PCNA is present, compared to unmodified PCNA or monoubiquitinated PCNA. Our data establish a biochemical mechanism for the role of Srs2 in crossover suppression by promoting SDSA through disruption of extended D-loops. DOI: http://dx.doi.org/10.7554/eLife.22195.001


Nucleic Acids Research | 2014

The Mus81-Mms4 structure-selective endonuclease requires nicked DNA junctions to undergo conformational changes and bend its DNA substrates for cleavage

Sucheta Mukherjee; William Douglass Wright; Kirk T. Ehmsen; Wolf Dietrich Heyer

Mus81-Mms4/EME1 is a DNA structure-selective endonuclease that cleaves joint DNA molecules that form during homologous recombination in mitotic and meiotic cells. Here, we demonstrate by kinetic analysis using physically tethered DNA substrates that budding yeast Mus81-Mms4 requires inherent rotational flexibility in DNA junctions for optimal catalysis. Förster Resonance Energy Transfer experiments further reveal that recognition of 3′-flap and nicked Holliday junction substrates by Mus81-Mms4 involves induction of a sharp bend with a 100° angle between two duplex DNA arms. In addition, thiol crosslinking of Mus81-Mms4 bound to DNA junctions demonstrates that the heterodimer undergoes a conformational change induced by joint DNA molecules with preferred structural properties. The results from all three approaches suggest a model for catalysis by Mus81-Mms4 in which initial DNA binding is based on minimal structural requirements followed by a rate-limiting conformational transition of the substrate and protein. This leads to a sharply kinked DNA molecule that may fray the DNA four base pairs away from the junction point to position the nuclease for cleavage between the fourth and fifth nucleotide. These data suggest that mutually compatible conformational changes of Mus81-Mms4 and its substrates tailor its incision activity to nicked junction molecules.


Journal of Biological Chemistry | 2018

Homologous recombination and the repair of DNA Double-Strand Breaks

William Douglass Wright; Shanaya Shital Shah; Wolf Dietrich Heyer

Homologous recombination enables the cell to access and copy intact DNA sequence information in trans, particularly to repair DNA damage affecting both strands of the double helix. Here, we discuss the DNA transactions and enzymatic activities required for this elegantly orchestrated process in the context of the repair of DNA double-strand breaks in somatic cells. This includes homology search, DNA strand invasion, repair DNA synthesis, and restoration of intact chromosomes. Aspects of DNA topology affecting individual steps are highlighted. Overall, recombination is a dynamic pathway with multiple metastable and reversible intermediates designed to achieve DNA repair with high fidelity.


Methods of Molecular Biology | 2011

Assays for structure-selective DNA endonucleases.

William Douglass Wright; Kirk T. Ehmsen; Wolf Dietrich Heyer

Structure-selective nucleases perform DNA strand incisions crucial to the repair/resolution of branched DNA molecules arising during DNA replication, recombination, and repair. From a combination of genetics and in vitro nuclease assay studies, we are just beginning to understand how these enzymes recognize their substrates and to identify their in vivo DNA structure targets. By performing nuclease assays on a variety of substrates meant to mimic cellular intermediates, structural features of branched DNA molecules that are important for robust catalysis can be defined. However, since these enzymes often are capable of cleaving a range of DNA structures, caution must be taken not to overemphasize the significance of incision of a certain structure before a careful and detailed kinetic analysis of a variety of DNA substrates with different polarities and structural features has been completed. Here, we provide protocols for the production of a variety of oligo-based DNA joint molecules and their use in endonuclease assays, which can be used to derive the kinetic parameters KM and kcat. Determination of these values for a variety of substrates provides meaningful comparisons that allow inferences to be made regarding in vivo DNA structure target(s).


bioRxiv | 2018

Dynamic Processing of Displacement Loops During Recombinational DNA Repair

Aurèle Piazza; Shanaya Shital Shah; William Douglass Wright; Steven K Gore; Romain Koszul; Wolf Dietrich Heyer

Displacement-loops (D-loops) are pivotal intermediates of homologous recombination (HR), a universal DNA double strand break (DSB) repair pathway. We developed a versatile assay for the physical detection of D-loops in vivo, which enabled studying the kinetics of their formation and defining the network of D-loop formation and reversal pathways. Nascent D-loops are detected within 2 hrs of DSB formation and extended over the next 2 hrs in a system allowing break-induced replication. The majority of D-loops are disrupted in wild type cells by two pathways: one supported by the Srs2 helicase and the other by the Mph1 helicase and the Sgs1-Top3-Rmi1 helicase-topoisomerase complex. Both pathways operate without significant overlap and are delineated by the Rad54 paralog Rdh54 in an ATPase-independent fashion. This study uncovers a novel layer of HR control in cells relying on nascent D-loop dynamics, revealing unsuspected complexities, and identifying a surprising role for a conserved Rad54 paralog.


Reference Module in Biomedical Sciences#R##N#Encyclopedia of Biological Chemistry | 2013

Recombination: DNA-Strand Transferases

William Douglass Wright; Wolf Dietrich Heyer

Homologous recombination is a ubiquitous DNA metabolic process involved in the repair and tolerance of DNA damage, the recovery of stalled or broken replication forks, and the faithful segregation of chromosomes during meiosis. A class of enzymes known as DNA-strand transferases carry out the signature reactions of recombination: homology search, DNA-strand invasion, and DNA-strand exchange. These proteins are found in all domains of life, and their active form is a right-handed protein–DNA filament that utilizes Watson–Crick base-pairing principles to exchange DNA strands.


Molecular Cell | 2016

Nek1 Regulates Rad54 to Orchestrate Homologous Recombination and Replication Fork Stability

Julian Spies; Anja Waizenegger; Olivia Barton; Michael Sürder; William Douglass Wright; Wolf Dietrich Heyer; Markus Löbrich

Collaboration


Dive into the William Douglass Wright's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kirk T. Ehmsen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven K Gore

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bret D Freudenthal

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge