Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kishor K. Bhakat is active.

Publication


Featured researches published by Kishor K. Bhakat.


Toxicology | 2003

Mammalian DNA base excision repair proteins: their interactions and role in repair of oxidative DNA damage

Tadahide Izumi; Lee Wiederhold; Gargi Roy; Rabindra Roy; Arun Jaiswal; Kishor K. Bhakat; Sankar Mitra; Tapas K. Hazra

The DNA base excision repair (BER) is a ubiquitous mechanism for removing damage from the genome induced by spontaneous chemical reaction, reactive oxygen species (ROS) and also DNA damage induced by a variety of environmental genotoxicants. DNA repair is essential for maintaining genomic integrity. As we learn more about BER, a more complex mechanism emerges which supersedes the classical, simple pathway requiring only four enzymatic reactions. The key to understand the complete BER process is to elucidate how multiple proteins interact with one another in a coordinated process under specific physiological conditions.


Journal of Biological Chemistry | 2007

Kruppel-like factor 4 is acetylated by p300 and regulates gene transcription via modulation of histone acetylation.

Wen Zhang; Xi Chen; Jun Yang; Kishor K. Bhakat; Chunming Liu

Colon cancer is the second leading cause of cancer death in the United States. Krüppel-like factor 4 (KLF4) is a transcription factor involved in both proliferation and differentiation in the colon. It is down-regulated in both mouse and human colonic adenomas and has been implicated as a tumor suppressor in the gut, whereas in breast cancer, KLF4 is an oncogene. KLF4 is also involved in reprogramming differentiated cells into pluripotent stem cells. KLF4 can act as a transcriptional activator or repressor, but the underlying mechanisms are poorly understood. We found that p300, a CREB-binding protein-related protein, interacts with KLF4 both in vitro and in vivo and activates transcription. We further made the novel observation that endogenous KLF4 is acetylated by p300/CBP in vivo and that mutations of the acetylated lysines resulted in a decreased ability of KLF4 to activate target genes, suggesting that acetylation is important for KLF4-mediated transactivation. Furthermore, we found that KLF4 differentially modulates histone H4 acetylation at the promoters of target genes. Co-transfection of KLF4 and HDAC3 resulted in a synergistic repression of a cyclin B1 reporter construct. Our results suggest that KLF4 might function as an activator or repressor of transcription depending on whether it interacts with co-activators such as p300 and CREB-binding protein or co-repressors such as HDAC3.


The EMBO Journal | 2003

Role of acetylated human AP-endonuclease (APE1/Ref-1) in regulation of the parathyroid hormone gene

Kishor K. Bhakat; Tadahide Izumi; Suk Hoon Yang; Tapas K. Hazra; Sankar Mitra

The human AP‐endonuclease (APE1/Ref‐1), a multifunctional protein central to repairing abasic sites and single‐strand breaks in DNA, also plays a role in transcriptional regulation. Besides activating some transcription factors, APE1 is directly involved in Ca2+‐dependent downregulation of parathyroid hormone (PTH) expression by binding to negative calcium response elements (nCaREs) present in the PTH promoter. Here we show that APE1 is acetylated both in vivo and in vitro by the transcriptional co‐activator p300 which is activated by Ca2+. Acetylation at Lys6 or Lys7 enhances binding of APE1 to nCaRE. APE1 stably interacts with class I histone deacetylases (HDACs) in vivo. An increase in extracellular calcium enhances the level of acetylated APE1 which acts as a repressor for the PTH promoter. Moreover, chromatin immunoprecipitation (ChIP) assay revealed that acetylation of APE1 enhanced binding of the APE1–HDACs complex to the PTH promoter. These results indicate that acetylation of APE1 plays an important role in this key repair proteins action in transcriptional regulation.


Molecular and Cellular Biology | 2006

Acetylation of Human 8-Oxoguanine-DNA Glycosylase by p300 and Its Role in 8-Oxoguanine Repair In Vivo

Kishor K. Bhakat; Sanath K. Mokkapati; Istvan Boldogh; Tapas K. Hazra; Sankar Mitra

ABSTRACT The human 8-oxoguanine-DNA glycosylase 1 (OGG1) is the major DNA glycosylase responsible for repair of 7,8-dihydro-8-oxoguanine (8-oxoG) and ring-opened fapyguanine, critical mutagenic DNA lesions that are induced by reactive oxygen species. Here we show that OGG1 is acetylated by p300 in vivo predominantly at Lys338/Lys341. About 20% of OGG1 is present in acetylated form in HeLa cells. Acetylation significantly increases OGG1s activity in vitro in the presence of AP-endonuclease by reducing its affinity for the abasic (AP) site product. The enhanced rate of repair of 8-oxoG in the genome by wild-type OGG1 but not the K338R/K341R mutant, ectopically expressed in oxidatively stressed OGG1-null mouse embryonic fibroblasts, suggests that acetylation increases OGG1 activity in vivo. At the same time, acetylation of OGG1 was increased by about 2.5-fold after oxidative stress with no change at the polypeptide level. OGG1 interacts with class I histone deacetylases, which may be responsible for its deacetylation. Based on these results, we propose a novel regulatory function of OGG1 acetylation in repair of its substrates in oxidatively stressed cells.


Free Radical Biology and Medicine | 2002

Choreography of oxidative damage repair in mammalian genomes

Sankar Mitra; Tadahide Izumi; Istvan Boldogh; Kishor K. Bhakat; Jeff W. Hill; Tapas K. Hazra

The lesions induced by reactive oxygen species in both nuclear and mitochondrial genomes include altered bases, abasic (AP) sites, and single-strand breaks, all repaired primarily via the base excision repair (BER) pathway. Although the basic BER process (consisting of five sequential steps) could be reconstituted in vitro with only four enzymes, it is now evident that repair of oxidative damage, at least in mammalian cell nuclei, is more complex, and involves a number of additional proteins, including transcription- and replication-associated factors. These proteins may be required in sequential repair steps in concert with other cellular changes, starting with nuclear targeting of the early repair enzymes in response to oxidative stress, facilitation of lesion recognition, and access by chromatin unfolding via histone acetylation, and formation of metastable complexes of repair enzymes and other accessory proteins. Distinct, specific subclasses of protein complexes may be formed for repair of oxidative lesions in the nucleus in transcribed vs. nontranscribed sequences in chromatin, in quiescent vs. cycling cells, and in nascent vs. parental DNA strands in replicating cells. Characterizing the proteins for each repair subpathway, their signaling-dependent modifications and interactions in the nuclear as well as mitochondrial repair complexes, will be a major focus of future research in oxidative damage repair.


Journal of Biological Chemistry | 2008

Interaction of the Human DNA Glycosylase NEIL1 with Proliferating Cell Nuclear Antigen THE POTENTIAL FOR REPLICATION-ASSOCIATED REPAIR OF OXIDIZED BASES IN MAMMALIAN GENOMES

Hong Dou; Corey A. Theriot; Aditi Das; Muralidhar L. Hegde; Yoshihiro Matsumoto; Istvan Boldogh; Tapas K. Hazra; Kishor K. Bhakat; Sankar Mitra

NEIL1 and NEIL2 compose a family of DNA glycosylases that is distinct from that of the other two DNA glycosylases, OGG1 and NTH1, all of which are involved in repair of oxidized bases in mammalian genomes. That the NEIL proteins, unlike OGG1 and NTH1, are able to excise base lesions from single-stranded DNA regions suggests their preferential involvement in repair during replication and/or transcription. Previous studies showing S phase-specific activation of NEIL1, but not NEIL2, suggested NEIL1 involvement in the repair of replicating DNA. Here, we show that human NEIL1 stably interacts both in vivo and in vitro with proliferating cell nuclear antigen (PCNA), the sliding clamp for DNA replication. PCNA stimulates NEIL1 activity in excising the oxidized base 5-hydroxyuracil from single-stranded DNA sequences including fork structures. PCNA enhances NEIL1 loading on the substrate. In contrast, although present in the NEIL2 immunocomplex, PCNA does not stimulate NEIL2. NEIL1 interacts with PCNA via a domain that is located in a region near the C terminus, dispensable for base excision activity. The interacting sequence in NEIL1, which lacks the canonical PCNA-binding motif, includes a sequence conserved in DNA polymerase δ and implicated in its PCNA binding. Mammalian two-hybrid analysis confirmed PCNA interaction with NEIL1. The G127A mutation in PCNA reduces its stimulatory activity, suggesting that the interdomain connector loop, a common binding interface of PCNA, is involved in NEIL1 binding. These results strongly support in vivo function of NEIL1 in preferential repair of oxidized bases in DNA prior to replication.


Journal of Biological Chemistry | 2011

Preferential Repair of Oxidized Base Damage in the Transcribed Genes of Mammalian Cells

Dibyendu Banerjee; Santi M. Mandal; Aditi Das; Muralidhar L. Hegde; Soumita Das; Kishor K. Bhakat; Istvan Boldogh; Partha S. Sarkar; Sankar Mitra; Tapas K. Hazra

Preferential repair of bulky DNA adducts from the transcribed genes via nucleotide excision repair is well characterized in mammalian cells. However, definitive evidence is lacking for similar repair of oxidized bases, the major endogenous DNA lesions. Here we show that the oxidized base-specific human DNA glycosylase NEIL2 associates with RNA polymerase II and the transcriptional regulator heterogeneous nuclear ribonucleoprotein-U (hnRNP-U), both in vitro and in cells. NEIL2 immunocomplexes from cell extracts preferentially repaired the mutagenic cytosine oxidation product 5-hydroxyuracil in the transcribed strand. In a reconstituted system, we also observed NEIL2-initiated transcription-dependent base excision repair of 5-hydroxyuracil in the transcribed strand, with hnRNP-U playing a critical role. Chromatin immunoprecipitation/reimmunoprecipitation studies showed association of NEIL2, RNA polymerase II, and hnRNP-U on transcribed but not on transcriptionally silent genes. Furthermore, NEIL2-depleted cells accumulated more DNA damage in active than in silent genes. These results strongly support the preferential role of NEIL2 in repairing oxidized bases in the transcribed genes of mammalian cells.


Molecular and Cellular Biology | 2008

Regulatory Role of Human AP-Endonuclease (APE1/Ref-1) in YB-1-Mediated Activation of the Multidrug Resistance Gene MDR1†

Ranajoy Chattopadhyay; Soumita Das; Amit K. Maiti; Istvan Boldogh; Jingwu Xie; Tapas K. Hazra; Kimitoshi Kohno; Sankar Mitra; Kishor K. Bhakat

ABSTRACT Human AP-endonuclease (APE1/Ref-1), a central enzyme involved in the repair of oxidative base damage and DNA strand breaks, has a second activity as a transcriptional regulator that binds to several trans-acting factors. APE1 overexpression is often observed in tumor cells and confers resistance to various anticancer drugs; its downregulation sensitizes tumor cells to such agents. Because the involvement of APE1 in repairing the DNA damage induced by many of these drugs is unlikely, drug resistance may be linked to APE1s transcriptional regulatory function. Here, we show that APE1, preferably in the acetylated form, stably interacts with Y-box-binding protein 1 (YB-1) and enhances its binding to the Y-box element, leading to the activation of the multidrug resistance gene MDR1. The enhanced MDR1 level due to the ectopic expression of wild-type APE1 but not of its nonacetylable mutant underscores the importance of APE1s acetylation in its coactivator function. APE1 downregulation sensitizes MDR1-overexpressing tumor cells to cisplatin or doxorubicin, showing APE1s critical role in YB-1-mediated gene expression and, thus, drug resistance in tumor cells. A systematic increase in both APE1 and MDR1 expression was observed in non-small-cell lung cancer tissue samples. Thus, our study has established the novel role of the acetylation-mediated transcriptional regulatory function of APE1, making it a potential target for the drug sensitization of tumor cells.


Journal of Biological Chemistry | 2007

Stimulation of NEIL2-mediated Oxidized Base Excision Repair via YB-1 Interaction during Oxidative Stress

Soumita Das; Ranajoy Chattopadhyay; Kishor K. Bhakat; Istvan Boldogh; Kimitoshi Kohno; Rajendra Prasad; Samuel H. Wilson; Tapas K. Hazra

The recently characterized enzyme NEIL2 (Nei-like-2), one of the four oxidized base-specific DNA glycosylases (OGG1, NTH1, NEIL1, and NEIL2) in mammalian cells, has poor base excision activity from duplex DNA. To test the possibility that one or more proteins modulate its activity in vivo, we performed mass spectrometric analysis of the NEIL2 immunocomplex and identified Y box-binding (YB-1) protein as a stably interacting partner of NEIL2. We show here that YB-1 not only interacts physically with NEIL2, but it also cooperates functionally by stimulating its base excision activity by 7-fold. Moreover, YB-1 interacts with the other NEIL2-associated BER proteins, namely, DNA ligase IIIα and DNA polymerase β and thus could form a large multiprotein complex. YB-1, normally present in the cytoplasm, translocates to the nucleus during UVA-induced oxidative stress, concomitant with its increased association with and activation of NEIL2. NEIL2-initiated base excision activity is significantly reduced in YB-1-depleted cells. YB-1 thus appears to have a novel regulatory role in NEIL2-mediated repair under oxidative stress.


Nucleic Acids Research | 2008

Regulation of the human AP-endonuclease (APE1/Ref-1) expression by the tumor suppressor p53 in response to DNA damage

Amira Zaky; Carlos S. Busso; Tadahide Izumi; Ranajoy Chattopadhyay; Ahmad R. Bassiouny; Sankar Mitra; Kishor K. Bhakat

The human AP-endonuclease (APE1/Ref-1), an essential multifunctional protein, plays a central role in the repair of oxidative base damage via the DNA base excision repair (BER) pathway. The mammalian AP-endonuclease (APE1) overexpression is often observed in tumor cells, and confers resistance to various anticancer drugs; its downregulation sensitizes tumor cells to those agents via induction of apoptosis. Here we show that wild type (WT) but not mutant p53 negatively regulates APE1 expression. Time-dependent decrease was observed in APE1 mRNA and protein levels in the human colorectal cancer line HCT116 p53(+/+), but not in the isogenic p53 null mutant after treatment with camptothecin, a DNA topoisomerase I inhibitor. Furthermore, ectopic expression of WTp53 in the p53 null cells significantly reduced both endogenous APE1 and APE1 promoter-dependent luciferase expression in a dose-dependent fashion. Chromatin immunoprecipitation assays revealed that endogenous p53 is bound to the APE1 promoter region that includes a Sp1 site. We show here that WTp53 interferes with Sp1 binding to the APE1 promoter, which provides a mechanism for the downregulation of APE1. Taken together, our results demonstrate that WTp53 is a negative regulator of APE1 expression, so that repression of APE1 by p53 could provide an additional pathway for p53-dependent induction of apoptosis in response to DNA damage.

Collaboration


Dive into the Kishor K. Bhakat's collaboration.

Top Co-Authors

Avatar

Sankar Mitra

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Tapas K. Hazra

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Istvan Boldogh

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Anil K. Mantha

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shrabasti Roychoudhury

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tadahide Izumi

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Ranajoy Chattopadhyay

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Heyu Song

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sutapa Ray

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge