Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sankar Mitra is active.

Publication


Featured researches published by Sankar Mitra.


Nature | 2000

DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination

Clifford D. Mol; Tadahide Izumi; Sankar Mitra; John A. Tainer

Non-coding apurinic/apyrimidinic (AP) sites in DNA are continually created in cells both spontaneously and by damage-specific DNA glycosylases. The biologically critical human base excision repair enzyme APE1 cleaves the DNA sugar-phosphate backbone at a position 5′ of AP sites to prime DNA repair synthesis. Here we report three co-crystal structures of human APE1 bound to abasic DNA which show that APE1 uses a rigid, pre-formed, positively charged surface to kink the DNA helix and engulf the AP-DNA strand. APE1 inserts loops into both the DNA major and minor grooves and binds a flipped-out AP site in a pocket that excludes DNA bases and racemized β-anomer AP sites. Both the APE1 active-site geometry and a complex with cleaved AP-DNA and Mn2+ support a testable structure-based catalytic mechanism. Alanine substitutions of the residues that penetrate the DNA helix unexpectedly show that human APE1 is structurally optimized to retain the cleaved DNA product. These structural and mutational results show how APE1 probably displaces bound glycosylases and retains the nicked DNA product, suggesting that APE1 acts in vivo to coordinate the orderly transfer of unstable DNA damage intermediates between the excision and synthesis steps of DNA repair.


Cell Research | 2008

Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells

Muralidhar L. Hegde; Tapas K. Hazra; Sankar Mitra

Base excision repair (BER) is an evolutionarily conserved process for maintaining genomic integrity by eliminating several dozen damaged (oxidized or alkylated) or inappropriate bases that are generated endogenously or induced by genotoxicants, predominantly, reactive oxygen species (ROS). BER involves 4-5 steps starting with base excision by a DNA glycosylase, followed by a common pathway usually involving an AP-endonuclease (APE) to generate 3′ OH terminus at the damage site, followed by repair synthesis with a DNA polymerase and nick sealing by a DNA ligase. This pathway is also responsible for repairing DNA single-strand breaks with blocked termini directly generated by ROS. Nearly all glycosylases, far fewer than their substrate lesions particularly for oxidized bases, have broad and overlapping substrate range, and could serve as back-up enzymes in vivo. In contrast, mammalian cells encode only one APE, APE1, unlike two APEs in lower organisms. In spite of overall similarity, BER with distinct subpathways in the mammals is more complex than in E. coli. The glycosylases form complexes with downstream proteins to carry out efficient repair via distinct subpathways one of which, responsible for repair of strand breaks with 3′ phosphate termini generated by the NEIL family glycosylases or by ROS, requires the phosphatase activity of polynucleotide kinase instead of APE1. Different complexes may utilize distinct DNA polymerases and ligases. Mammalian glycosylases have nonconserved extensions at one of the termini, dispensable for enzymatic activity but needed for interaction with other BER and non-BER proteins for complex formation and organelle targeting. The mammalian enzymes are sometimes covalently modified which may affect activity and complex formation. The focus of this review is on the early steps in mammalian BER for oxidized damage.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Identification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA

Tapas K. Hazra; Tadahide Izumi; Istvan Boldogh; Barry R. Imhoff; Yoke W. Kow; Pawel Jaruga; Miral Dizdaroglu; Sankar Mitra

8-oxoguanine (8-oxoG), ring-opened purines (formamidopyrimidines or Fapys), and other oxidized DNA base lesions generated by reactive oxygen species are often mutagenic and toxic, and have been implicated in the etiology of many diseases, including cancer, and in aging. Repair of these lesions in all organisms occurs primarily via the DNA base excision repair pathway, initiated with their excision by DNA glycosylase/AP lyases, which are of two classes. One class utilizes an internal Lys residue as the active site nucleophile, and includes Escherichia coli Nth and both known mammalian DNA glycosylase/AP lyases, namely, OGG1 and NTH1. E. coli MutM and its paralog Nei, which comprise the second class, use N-terminal Pro as the active site. Here, we report the presence of two human orthologs of E. coli mutM nei genes in the human genome database, and characterize one of their products. Based on the substrate preference, we have named it NEH1 (Nei homolog). The 44-kDa, wild-type recombinant NEH1, purified to homogeneity from E. coli, excises Fapys from damaged DNA, and oxidized pyrimidines and 8-oxoG from oligodeoxynucleotides. Inactivation of the enzyme because of either deletion of N-terminal Pro or Histag fusion at the N terminus supports the role of N-terminal Pro as its active site. The tissue-specific levels of NEH1 and OGG1 mRNAs are distinct, and S phase-specific increase in NEH1 at both RNA and protein levels suggests that NEH1 is involved in replication-associated repair of oxidized bases.


Physiological Reviews | 2014

Oxidative Stress: An Essential Factor in the Pathogenesis of Gastrointestinal Mucosal Diseases

Asima Bhattacharyya; Ranajoy Chattopadhyay; Sankar Mitra; Sheila E. Crowe

Reactive oxygen species (ROS) are generated as by-products of normal cellular metabolic activities. Superoxide dismutase, glutathione peroxidase, and catalase are the enzymes involved in protecting cells from the damaging effects of ROS. ROS are produced in response to ultraviolet radiation, cigarette smoking, alcohol, nonsteroidal anti-inflammatory drugs, ischemia-reperfusion injury, chronic infections, and inflammatory disorders. Disruption of normal cellular homeostasis by redox signaling may result in cardiovascular, neurodegenerative diseases and cancer. ROS are produced within the gastrointestinal (GI) tract, but their roles in pathophysiology and disease pathogenesis have not been well studied. Despite the protective barrier provided by the mucosa, ingested materials and microbial pathogens can induce oxidative injury and GI inflammatory responses involving the epithelium and immune/inflammatory cells. The pathogenesis of various GI diseases including peptic ulcers, gastrointestinal cancers, and inflammatory bowel disease is in part due to oxidative stress. Unraveling the signaling events initiated at the cellular level by oxidative free radicals as well as the physiological responses to such stress is important to better understand disease pathogenesis and to develop new therapies to manage a variety of conditions for which current therapies are not always sufficient.


Journal of Biological Chemistry | 2003

Repair of Oxidized Bases in DNA Bubble Structures by Human DNA Glycosylases NEIL1 and NEIL2

Hong Dou; Sankar Mitra; Tapas K. Hazra

Repair of oxidatively damaged bases in the genome via the base excision repair pathway is initiated with excision of these lesions by DNA glycosylases with broad substrate range. The newly discovered human DNA glycosylases, NEIL1 and NEIL2, are distinct in structural features and reaction mechanism from the previously characterized NTH1 and OGG1 but act on many of the same substrates. However, NEIL2 shows a unique preference for excising lesions from a DNA bubble, whereas NTH1 and OGG1 are only active with duplex DNA. NEIL1 also excises efficiently 5-hydroxyuracil, an oxidation product of cytosine, from the bubble and single-stranded DNA but does not have strong activity toward 8-oxoguanine in the bubble. The dichotomy in the activity of NEILs versus NTH1/OGG1 for bubble versus duplex DNA substrates is consistent with higher affinity of the NEILs for the bubble structures of both damaged and undamaged DNA relative to duplex structure. These observations suggest that the NEILs are functionally distinct from OGG1/NTH1 in vivo. OGG1/NTH1-independent repair of oxidized bases in the transcribed sequences supports the possibility that NEILs are preferentially involved in repair of lesions in DNA bubbles generated during transcription and/or replication.


Journal of Clinical Investigation | 2005

ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation.

Istvan Boldogh; Attila Bacsi; Barun K. Choudhury; Nilesh Dharajiya; Rafeul Alam; Tapas K. Hazra; Sankar Mitra; Randall M. Goldblum; Sanjiv Sur

Pollen exposure induces allergic airway inflammation in sensitized subjects. The role of antigenic pollen proteins in the induction of allergic airway inflammation is well characterized, but the contribution of other constituents in pollen grains to this process is unknown. Here we show that pollen grains and their extracts contain intrinsic NADPH oxidases. The pollen NADPH oxidases rapidly increased the levels of ROS in lung epithelium as well as the amount of oxidized glutathione (GSSG) and 4-hydroxynonenal (4-HNE) in airway-lining fluid. These oxidases, as well as products of oxidative stress (such as GSSG and 4-HNE) generated by these enzymes, induced neutrophil recruitment to the airways independent of the adaptive immune response. Removal of pollen NADPH oxidase activity from the challenge material reduced antigen-induced allergic airway inflammation, the number of mucin-containing cells in airway epithelium, and antigen-specific IgE levels in sensitized mice. Furthermore, challenge with Amb a 1, the major antigen in ragweed pollen extract that does not possess NADPH oxidase activity, induced low-grade allergic airway inflammation. Addition of GSSG or 4-HNE to Amb a 1 challenge material boosted allergic airway inflammation. We propose that oxidative stress generated by pollen NADPH oxidases (signal 1) augments allergic airway inflammation induced by pollen antigen (signal 2).


Journal of Biological Chemistry | 1998

Purification and Characterization of Human NTH1, a Homolog of Escherichia coli Endonuclease III

Shogo Ikeda; Tapan Biswas; Rabindra Roy; Tadahide Izumi; Istvan Boldogh; Alexander Kurosky; Altaf H. Sarker; Shuji Seki; Sankar Mitra

The human endonuclease III (hNTH1), a homolog of the Escherichia coli enzyme (Nth), is a DNA glycosylase with abasic (apurinic/apyrimidinic (AP)) lyase activity and specifically cleaves oxidatively damaged pyrimidines in DNA. Its cDNA was cloned, and the full-length enzyme (304 amino acid residues) was expressed as a glutathione S-transferase fusion polypeptide in E. coli. Purified wild-type protein with two additional amino acid residues and a truncated protein with deletion of 22 residues at the NH2 terminus were equally active and had absorbance maxima at 280 and 410 nm, the latter due to the presence of a [4Fe-4S]cluster, as in E. coli Nth. The enzyme cleaved thymine glycol-containing form I plasmid DNA and a dihydrouracil (DHU)-containing oligonucleotide duplex. The protein had a molar extinction coefficient of 5.0 × 104 and a pI of 10. With the DHU-containing oligonucleotide duplex as substrate, theK m was 47 nm, andk cat was ∼0.6/min, independent of whether DHU paired with G or A. The enzyme carries out β-elimination and forms a Schiff base between the active site residue and the deoxyribose generated after base removal. The prediction of Lys-212 being the active site was confirmed by sequence analysis of the peptide-oligonucleotide adduct. Furthermore, replacing Lys-212 with Gln inactivated the enzyme. However, replacement with Arg-212 yielded an active enzyme with about 85-fold lower catalytic specificity than the wild-type protein. DNase I footprinting with hNTH1 showed protection of 10 nucleotides centered around the base lesion in the damaged strand and a stretch of 15 nucleotides (with the G opposite the lesion at the 5′-boundary) in the complementary strand. Immunological studies showed that HeLa cells contain a single hNTH species of the predicted size, localized in both the nucleus and the cytoplasm.


Toxicology | 2003

Mammalian DNA base excision repair proteins: their interactions and role in repair of oxidative DNA damage

Tadahide Izumi; Lee Wiederhold; Gargi Roy; Rabindra Roy; Arun Jaiswal; Kishor K. Bhakat; Sankar Mitra; Tapas K. Hazra

The DNA base excision repair (BER) is a ubiquitous mechanism for removing damage from the genome induced by spontaneous chemical reaction, reactive oxygen species (ROS) and also DNA damage induced by a variety of environmental genotoxicants. DNA repair is essential for maintaining genomic integrity. As we learn more about BER, a more complex mechanism emerges which supersedes the classical, simple pathway requiring only four enzymatic reactions. The key to understand the complete BER process is to elucidate how multiple proteins interact with one another in a coordinated process under specific physiological conditions.


Nature | 2000

Erratum: DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination (Nature (2000) 403 (451-456))

Clifford D. Mol; Tadahide Izumi; Sankar Mitra; John A. Tainer

This corrects the article DOI: 10.1038/35000249


Progress in Nucleic Acid Research and Molecular Biology | 1993

Regulation of Repair of Alkylation Damage in Mammalian Genomes

Sankar Mitra; Bernd Kaina

Publisher Summary This chapter discusses the current understanding of the molecular basis of the regulation of alkylation damage repair in mammals. Such molecular studies were not possible until the recent success in the cloning of the alkylation repair genes. This chapter first explains the basic mechanisms of repair proteins. The availability of nucleic-acid and antibody probes for many of the alkylation repair genes and proteins, and elucidation of the structure and identification of the regulatory elements of these genes, provide an opportunity for a comprehensive understanding of regulation of alkylation damage repair. The prospect of large-scale production of the human alkylation repair proteins in E . coli for the subsequent determination of their structure by X-ray crystallography and NMR looks quite good. In contrast to inhibition of repair genes at the level of their expression, these genes could also be inactivated in cultured cells by homologous recombination. Starting with mutations in repair genes of pluripotent embryonic stem cells, repair-deficient or repair-negative mice could be generated. Such animals may make excellent models for mutagen, carcinogen, and aging studies.

Collaboration


Dive into the Sankar Mitra's collaboration.

Top Co-Authors

Avatar

Tapas K. Hazra

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Tadahide Izumi

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Istvan Boldogh

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kishor K. Bhakat

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Rabindra Roy

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Robert S. Foote

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Pavana M. Hegde

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Bartosz Szczesny

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Anil K. Mantha

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge